View source: R/spsample_beta.R View source: R/spsample.R
spsample | R Documentation |
Posterior sampling algorithm for generating samples of spatial random effects and regression coefficients using a Gibbs sampling algorithm.
Posterior sampling algorithm for generating samples of spatio-temporal random effects and regression coefficients using a Gibbs sampling algorithm.
spsample(
y = NULL,
X = NULL,
coords = NULL,
phi = NULL,
sig2 = NULL,
tau2 = NULL,
cov.type = c("matern1", "matern2", "gaussian"),
silent = TRUE
)
spsample(
y = NULL,
X = NULL,
coords = NULL,
phi = NULL,
sig2 = NULL,
tau2 = NULL,
cov.type = c("matern1", "matern2", "gaussian"),
silent = TRUE
)
y |
response |
X |
design matrix |
coords |
spatial co-ordinates |
phi |
posterior samples of the spatial range parameter |
sig2 |
posterior samples of the spatio-temporal variance parameter (partial sill) |
tau2 |
posterior samples of the error variance (nugget) |
cov.type |
type of covariance kernel being used. Choices include Exponential, Mat\'ern( |
silent |
logical argument for print-statements |
t |
temporal coordinates |
phis |
posterior samples of the spatial range parameter |
phit |
posterior samples of the temporal range parameter |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.