new_mut_prev <- function(x) {
tibble::new_tibble(x, class = "mut_prev")
}
#' @export
`[.mut_prev` <- function(x, i, j, drop = FALSE) {
mut_prev_reconstruct(NextMethod())
}
#' @export
`names<-.mut_prev` <- function(x, value) {
mut_prev_reconstruct(NextMethod())
}
#' @export
`$<-.mut_prev` <- function(x, name, value) {
mut_prev_reconstruct(NextMethod())
}
#------------------------------------------------
#' Compute prevalence of mutations
#'
#' Generate a table representing the prevalence of unique mutations. In order to
#' ensure confidence in the results, a threshold is provided indicating
#' confidence in genotype calls. All data that do not meet this threshold will
#' be removed from the computation.
#'
#' @param data A data frame, data frame extension (e.g. a tibble), or a lazy
#' data frame (e.g. from dbplyr or dtplyr).
#' @param threshold A minimum UMI count which reflects the confidence in the
#' genotype call. Data with a UMI count of less than the threshold will be
#' filtered out from the analysis.
#'
#' @return
#' A [tibble][tibble::tibble()] with the extra class `mutation_prev`. The output
#' has the following columns:
#'
#' * `mutation_name`: The unique mutation sequenced.
#' * `n_total`: The number of samples for which a mutation site was sequenced.
#' * `n_mutant`: The number of samples for which a mutation occurred.
#' * `prevalence`: The prevalence of the mutation.
#'
#' @export
mutation_prevalence <- function(data, threshold) {
# Ensure have a table with reference umi counts, alternate umi counts, and
# coverage
cols <- c("ref_umi_count", "alt_umi_count", "coverage")
if (!all(cols %in% colnames(data))) {
abort(c(
"Data is mising required columns.",
x = "Need a column for the reference UMI counts.",
x = "Need a column for the alternate UMI counts.",
x = "Need a column for the coverage."
))
}
# Use threshold to filter data
total <- dplyr::filter(
data,
.data$coverage > threshold &
(.data$alt_umi_count > threshold | .data$ref_umi_count > threshold)
)
mutant_data <- dplyr::filter(total, .data$alt_umi_count > threshold)
# Need column mutation name
if (!"mutation_name" %in% colnames(data)) {
abort("Data needs the column `mutation_name`.")
}
# Get counts of mutations
total_count <- total %>%
dplyr::count(.data$mutation_name) %>%
dplyr::rename(n_total = .data$n)
mutant_count <- mutant_data %>%
dplyr::count(.data$mutation_name) %>%
dplyr::rename(n_mutant = .data$n)
# Compute prevalence
prevalence <- total_count %>%
dplyr::full_join(mutant_count, by = "mutation_name") %>%
dplyr::mutate(prevalence = .data$n_mutant / .data$n_total)
# Assign a subclass "mut_prev"
new_mut_prev(prevalence)
}
#------------------------------------------------
#' Plot prevalence of mutations
#'
#' Plot the prevalence of mutations generated by [mutation_prevalence()].
#' The prevalence is plotted on the y-axis and the amino acid change is plotted
#' on the x-axis. Data are grouped by the gene on which the mutation took place
#' and coloured according to their groupings.
#'
#' @param data An object of class `mutation_prev`. Derived from the output of
#' [mutation_prevalence()].
#'
#' @export
plot_mutation_prevalence <- function(data) {
if (!inherits(data, "mut_prev")) {
rlang::abort(c(
"Data object must be of class `mut_prev`.",
i = "Did you forget to run `mutation_prevalence()` first?"
))
}
plot(data)
}
#' @importFrom ggplot2 autoplot
#' @rdname plot_mutation_prevalence
#' @export
autoplot.mut_prev <- function(object, ...) {
plot_data <- object %>%
tidyr::drop_na() %>%
tidyr::extract(
col = .data$mutation_name,
into = c("gene", "aa_change"),
regex = "^(.*)(?=-)[-](.*)"
) %>%
miplicorn::arrange_natural(.data$gene, .data$aa_change)
ggplot2::ggplot(
data = plot_data,
mapping = ggplot2::aes(
x = .data$aa_change,
y = .data$prevalence,
fill = .data$gene
)
) +
ggplot2::geom_col() +
ggplot2::labs(
x = "Amino Acid Change",
y = "Prevalence",
title = "Prevalence of Mutations"
) +
ggplot2::scale_fill_viridis_d(name = "Gene") +
miplicorn::theme_miplicorn() +
ggplot2::theme(
axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5, hjust = 1)
)
}
#' @importFrom graphics plot
#' @rdname plot_mutation_prevalence
#' @export
plot.mut_prev <- function(x, ...) {
print(autoplot(x, ...))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.