genTDCM <- function(n, dist, corr, dist.par, model.cens, cens.par, beta, lambda) {
if (n <= 0) {stop("Argument 'n' must be greater than 0", call.=FALSE);}
if ( !( dist %in% c("weibull", "exponential") ) ) {stop("Argument 'dist' must be one of 'weibull' or 'exponential'", call.=FALSE);}
if (dist == "weibull") {
if (corr <= 0 | corr > 1) {stop("Argument 'corr' with 'dist=weibull' must be greater than 0 and lower or equal to 1", call.=FALSE);}
if (length(dist.par) != 4) {stop("Argument 'dist.par' with 'dist=weibull' must be a vector with lenght 4", call.=FALSE);}
if (dist.par[1] <= 0 | dist.par[2] <= 0 | dist.par[3] <= 0 | dist.par[4] <= 0) {stop("Argument 'dist.par' must be greater than 0", call.=FALSE);}
} else if (dist == "exponential") {
if (corr < -1 | corr > 1) {stop("Argument 'corr' with dist='exponential' must be greater or equal to -1 and lower or equal to 1", call.=FALSE);}
if (length(dist.par) != 2) {stop("Argument 'dist.par' with 'dist=exponential' must be a vector with lenght 2", call.=FALSE);}
if (dist.par[1] <= 0 | dist.par[2] <= 0) {stop("Argument 'dist.par' must be greater than 0", call.=FALSE);}
}
if ( !( model.cens %in% c("uniform", "exponential") ) ) {stop("Argument 'model.cens' must be one of 'uniform' or 'exponential'", call.=FALSE);}
if (cens.par <= 0) {stop("Argument 'cens.par' must be greater than 0", call.=FALSE);}
if (length(beta) != 2) {stop("Argument 'beta' length must be a vector with length 2", call.=FALSE);}
if (lambda <= 0) {stop("Argument 'lambda' must be greater than 0", call.=FALSE);}
b <- dgBIV(n, dist, corr, dist.par);
if (model.cens == "uniform") {
rfunc <- runifcens;
} else if (model.cens == "exponential") {rfunc <- rexpcens;}
mat <- matrix(ncol=6,nrow=1);
for (k in 1:n) {
status <- 1;
u <- runif(1, 0, 1);
z1 <- b[k,2];
c <- rfunc(1, cens.par);
if ( u < 1-exp( -lambda*b[k,1]*exp(beta[1]*z1) ) ) {
t <- -log(1-u)/( lambda*exp(beta[1]*z1) );
z2 <- 0;
} else {
t <- -( log(1-u)+lambda*b[k,1]*exp(beta[1]*z1)*( 1-exp(beta[2]) ) )/( lambda*exp(beta[1]*z1+beta[2]) );
x12 <- b[k,1];
z2 <- 1;
}
time <- min(t, c);
ifelse(t > c, status <- 0, status <- 1);
if ( u < 1-exp( -lambda*b[k,1]*exp(beta[1]*z1) ) ) {
aux1 <- c(k, 0, time, status, z1, 0);
mat <- rbind(mat, aux1);
} else {
if (c > x12) {
aux1 <- c(k, 0, x12, 0, z1, 0);
mat <- rbind(mat, aux1);
aux2 <- c(k, x12, time, status, z1, 1);
mat <- rbind(mat, aux2);
} else {
aux1 <- c(k, 0, time, status, z1, 0);
mat <- rbind(mat, aux1);
}
}
}
data <- data.frame(mat, row.names=NULL);
names(data) <- c("id", "start", "stop", "event", "covariate", "tdcov");
data <- data[-1,];
row.names(data) <- as.integer( 1:nrow(data) );
class(data) <- c(class(data), "TDCM");
return(data);
} # genTDCM
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.