R/indices.R

Defines functions MHRD.default MHRD.fData MHRD HRD.default HRD.fData HRD MHI.default MHI.fData MHI HI.default HI.fData HI MEI.default MEI.fData MEI EI.default EI.fData EI

Documented in EI EI.default EI.fData HI HI.default HI.fData HRD HRD.default HRD.fData MEI MEI.default MEI.fData MHI MHI.default MHI.fData MHRD MHRD.default MHRD.fData

#' Epigraph Index of univariate functional dataset
#'
#' This function computes the Epigraphic Index (EI) of elements of a univariate
#' functional dataset.
#'
#' Given a univariate functional dataset, \eqn{X_1(t), X_2(t), \ldots, X_N(t)},
#' defined over a compact interval \eqn{I=[a,b]}, this function computes the
#' EI, i.e.:
#'
#' \deqn{EI( X(t) ) = \frac{1}{N} \sum_{i=1}^N I( G( X_i(t) ) \subset
#' epi( X(t) ) ) = \frac{1}{N} \sum_{i=1}^N I( X_i(t) \geq X(t), \ \
#' \forall t \in I), }
#'
#' where \eqn{G(X_i(t))} indicates the graph of \eqn{X_i(t)}, \eqn{epi( X(t))}
#' indicates the epigraph of \eqn{X(t)}.
#'
#' @param Data either an \code{fData} object or a matrix-like dataset of
#' functional data (e.g. \code{fData$values}), with observations as rows and
#' measurements over grid points as columns.
#'
#' @return The function returns a vector containing the values of EI for each
#' element of the functional dataset provided in \code{Data}.
#'
#' @references
#'
#' Lopez-Pintado, S. and Romo, J. (2012). A half-region depth for functional
#' data, \emph{Computational Statistics and Data Analysis}, 55, 1679-1695.
#'
#' Arribas-Gil, A., and Romo, J. (2014). Shape outlier detection and
#' visualization for functional data: the outliergram, \emph{Biostatistics},
#' 15(4), 603-619.
#'
#' @examples
#'
#' N = 20
#' P = 1e2
#'
#' grid = seq( 0, 1, length.out = P )
#'
#' C = exp_cov_function( grid, alpha = 0.2, beta = 0.3 )
#'
#' Data = generate_gauss_fdata( N,
#'                              centerline = sin( 2 * pi * grid ),
#'                              C )
#' fD = fData( grid, Data )
#'
#' EI( fD )
#'
#' EI( Data )
#'
#' @seealso \code{\link{MEI}}, \code{\link{HI}}, \code{\link{MHI}},
#' \code{\link{fData}}
#'
#' @export
#'
EI = function( Data )
{
  UseMethod( 'EI', Data )
}

#' @rdname EI
#'
#' @export
EI.fData = function( Data )
{
  Data = Data$values
  NextMethod()
}

#' @rdname EI
#'
#' @export
#'
EI.default = function( Data )
{
  # Number of observations
  N = nrow( Data )

  return( apply( Data, 1,
                 function( x )
                   sum( apply( Data, 1,
                               function( s ) ( all( x <= s  ) ) ) ) / N ) )
}


#' Modified Epigraph Index of univariate functional dataset
#'
#' This function computes the Modified Epigraphic Index (MEI) of elements of a
#' univariate functional dataset.
#'
#' Given a univariate functional dataset, \eqn{X_1(t), X_2(t), \ldots, X_N(t)},
#' defined over a compact interval \eqn{I=[a,b]}, this function computes the
#' MEI, i.e.:
#'
#' \deqn{MEI( X(t) ) = \frac{1}{N} \sum_{i=1}^N \tilde{\lambda}( X(t) \leq
#' X_i(t) ), }
#'
#' where \eqn{\tilde{\lambda}(\cdot)} is the normalized Lebesgue measure over
#' \eqn{I=[a,b]}, that is \eqn{\tilde{\lambda(A)} = \lambda( A ) / ( b - a )}.
#'
#' @param Data either an \code{fData} object or a matrix-like dataset of
#' functional data (e.g. \code{fData$values}),
#' with observations as rows and measurements over grid points as columns.
#'
#' @return The function returns a vector containing the values of MEI for each
#' element of the functional dataset provided in \code{Data}.
#'
#' @references
#'
#' Lopez-Pintado, S. and Romo, J. (2012). A half-region depth for functional
#' data, \emph{Computational Statistics and Data Analysis}, 55, 1679-1695.
#'
#' Arribas-Gil, A., and Romo, J. (2014). Shape outlier detection and
#' visualization for functional data: the outliergram, \emph{Biostatistics},
#' 15(4), 603-619.
#'
#' @examples
#'
#' N = 20
#' P = 1e2
#'
#' grid = seq( 0, 1, length.out = P )
#'
#' C = exp_cov_function( grid, alpha = 0.2, beta = 0.3 )
#'
#' Data = generate_gauss_fdata( N,
#'                              centerline = sin( 2 * pi * grid ),
#'                              C )
#'
#' fD = fData( grid, Data )
#'
#' MEI( fD )
#'
#' MEI( Data )
#'
#' @seealso \code{\link{EI}}, \code{\link{MHI}}, \code{\link{HI}},
#' \code{\link{fData}}
#'
#' @export
#'
MEI = function( Data )
{
  UseMethod( 'MEI', Data )
}

#' @rdname MEI
#'
#' @export
MEI.fData = function( Data )
{
  Data = Data$values
  NextMethod()
}


#' @rdname MEI
#'
#' @export
MEI.default = function( Data )
{
  # Number of observations
  N = nrow( Data )

  # Number of time points
  P = ncol( Data )

  # Matrix of ranks, with `min' policy for breaking ties
  rk = apply( Data, 2, function( v ) ( rank( v, ties.method = 'min' ) ) )

  # Number of curves equal or above, time by time
  N_a = N - rk + 1

  MEI = rowSums( N_a ) / ( N * P )

  return( MEI )
}



#' Hypograph Index of univariate functional dataset
#'
#' This function computes the Hypograph Index (HI) of elements of a univariate
#' functional dataset.
#'
#' Given a univariate functional dataset, \eqn{X_1(t), X_2(t), \ldots, X_N(t)},
#' defined over a compact interval \eqn{I=[a,b]}, this function computes the
#' HI, i.e.:
#'
#' \deqn{HI( X(t) ) = \frac{1}{N} \sum_{i=1}^N I( G( X_i(t) ) \subset
#' hyp( X(t) ) ) = \frac{1}{N} \sum_{i=1}^N I( X_i(t) \leq X(t), \ \
#' \forall t \in I), }
#'
#' where \eqn{G(X_i(t))} indicates the graph of \eqn{X_i(t)}, \eqn{hyp( X(t))}
#' indicates the hypograph of \eqn{X_i(t)}.
#'
#' @param Data either an \code{fData} object or a matrix-like dataset of
#' functional data (e.g. \code{fData$values}),
#' with observations as rows and measurements over grid points as columns.
#'
#' @return The function returns a vector containing the values of HI for each
#' element of the functional dataset provided in \code{Data}.
#'
#' @references
#'
#' Lopez-Pintado, S. and Romo, J. (2012). A half-region depth for functional
#' data, \emph{Computational Statistics and Data Analysis}, 55, 1679-1695.
#'
#' Arribas-Gil, A., and Romo, J. (2014). Shape outlier detection and
#' visualization for functional data: the outliergram, \emph{Biostatistics},
#' 15(4), 603-619.
#'
#' @examples
#'
#' N = 20
#' P = 1e2
#'
#' grid = seq( 0, 1, length.out = P )
#'
#' C = exp_cov_function( grid, alpha = 0.2, beta = 0.3 )
#'
#' Data = generate_gauss_fdata( N,
#'                              centerline = sin( 2 * pi * grid ),
#'                              C )
#' fD = fData( grid, Data )
#'
#' HI( fD )
#'
#' HI( Data )
#'
#' @seealso \code{\link{MHI}}, \code{\link{EI}}, \code{\link{MEI}},
#' \code{\link{fData}}
#'
#' @export
#'
HI = function( Data )
{
  UseMethod( 'HI', Data )
}


#' @rdname HI
#'
#' @export
HI.fData = function( Data )
{
  Data = Data$values
  NextMethod()
}


#' @rdname HI
#'
#' @export
HI.default = function( Data )
{
  # Number of observations
  N = nrow( Data )

  return( apply( Data, 1,
                 function( x )
                   sum( apply( Data, 1,
                               function( s ) ( all( x >= s  ) ) ) ) / N ) )

  return( HI )
}


#' Modified Hypograph Index of univariate functional dataset
#'
#' This function computes the Modified Hypograph Index (MEI) of elements of a
#' univariate functional dataset.
#'
#' Given a univariate functional dataset, \eqn{X_1(t), X_2(t), \ldots, X_N(t)},
#' defined over a compact interval \eqn{I=[a,b]}, this function computes the
#' MHI, i.e.:
#'
#' \deqn{MHI( X(t) ) = \frac{1}{N} \sum_{i=1}^N \tilde{\lambda}( X(t) \geq
#' X_i(t) ), }
#'
#' where \eqn{\tilde{\lambda}(\cdot)} is the normalized Lebesgue measure over
#' \eqn{I=[a,b]}, that is \eqn{\tilde{\lambda(A)} = \lambda( A ) / ( b - a )}.
#'
#' @param Data either an \code{fData} object or a matrix-like dataset of
#' functional data (e.g. \code{fData$values}),
#' with observations as rows and measurements over grid points as columns.
#'
#' @return The function returns a vector containing the values of MHI for each
#' element of the functional dataset provided in \code{Data}.
#'
#' @references
#'
#' Lopez-Pintado, S. and Romo, J. (2012). A half-region depth for functional
#' data, \emph{Computational Statistics and Data Analysis}, 55, 1679-1695.
#'
#' Arribas-Gil, A., and Romo, J. (2014). Shape outlier detection and
#' visualization for functional data: the outliergram, \emph{Biostatistics},
#' 15(4), 603-619.
#'
#' @examples
#'
#' N = 20
#' P = 1e2
#'
#' grid = seq( 0, 1, length.out = P )
#'
#' C = exp_cov_function( grid, alpha = 0.2, beta = 0.3 )
#'
#' Data = generate_gauss_fdata( N,
#'                              centerline = sin( 2 * pi * grid ),
#'                              C )
#' fD = fData( grid, Data )
#'
#' MHI( fD )
#'
#' MHI( Data )
#'
#' @seealso \code{\link{HI}}, \code{\link{MEI}}, \code{\link{EI}},
#' \code{\link{fData}}
#'
#' @export
#'
MHI = function( Data )
{
  UseMethod( 'MHI', Data )
}

#' @rdname MHI
#'
#' @export
MHI.fData = function( Data )
{
  Data = Data$values
  NextMethod()
}

#' @rdname MHI
#'
#' @export
MHI.default = function( Data )
{
  # Number of observations
  N = nrow( Data )

  # Number of time points
  P = ncol( Data )

  # Matrix of ranks, with `max' policy for breaking ties
  rk = apply( Data, 2, function( v ) ( rank( v, ties.method = 'max' ) ) )

  # Number of curves equal or below, time by time
  # N_b = rk

  MHI = rowSums( rk ) / ( N * P )

  return( MHI )
}


#' Half-Region Depth for univariate functional data
#'
#' This function computes the Half-Region Depth (HRD) of elements of a univariate
#' functional dataset.
#'
#' Given a univariate functional dataset, \eqn{X_1(t), X_2(t), \ldots, X_N(t)},
#' defined over a compact interval \eqn{I=[a,b]}, this function computes the HRD
#' of its elements, i.e.:
#'
#' \deqn{HRD(X(t)) = \min( EI( X(t) ), HI(X(t)) ),}
#'
#' where \eqn{EI(X(t))} indicates the Epigraph Index (EI) of \eqn{X(t)} with
#' respect to the dataset, and \eqn{HI(X(t))} indicates the Hypograph Index of
#' \eqn{X(t)} with respect to the dataset.
#'
#' @param Data either an \code{fData} object or a matrix-like dataset of
#' functional data (e.g. \code{fData$values}),
#' with observations as rows and measurements over grid points as columns.
#'
#' @return The function returns a vector containing the values of HRD for each
#' element of the functional dataset provided in \code{Data}.
#'
#' @references
#'
#' Lopez-Pintado, S. and Romo, J. (2012). A half-region depth for functional
#' data, \emph{Computational Statistics and Data Analysis}, 55, 1679-1695.
#'
#' Arribas-Gil, A., and Romo, J. (2014). Shape outlier detection and
#' visualization for functional data: the outliergram, \emph{Biostatistics},
#' 15(4), 603-619.
#'
#' @examples
#'
#' N = 20
#' P = 1e2
#'
#' grid = seq( 0, 1, length.out = P )
#'
#' C = exp_cov_function( grid, alpha = 0.2, beta = 0.3 )
#'
#' Data = generate_gauss_fdata( N,
#'                              centerline = sin( 2 * pi * grid ),
#'                              C )
#'
#' fD = fData( grid, Data )
#'
#' HRD( fD )
#'
#' HRD( Data )
#'
#' @seealso \code{\link{MHRD}}, \code{\link{EI}}, \code{\link{HI}},
#' \code{\link{fData}}
#'
#' @export
#'
HRD = function( Data )
{
  UseMethod( 'HRD', Data )
}

#' @rdname HRD
#'
#' @export
HRD.fData = function( Data )
{
  Data = Data$values
  NextMethod()
}


#' @rdname HRD
#'
#' @export
HRD.default = function( Data )
{
  ei = EI( Data )

  hi = HI( Data )

  return( mapply( min, ei, hi ) )
}


#' Modified Half-Region Depth for univariate functional data
#'
#' This function computes the Modified Half-Region Depth (MHRD) of elements of
#' a univariate functional dataset.
#'
#' Given a univariate functional dataset, \eqn{X_1(t), X_2(t), \ldots, X_N(t)},
#' defined over a compact interval \eqn{I=[a,b]}, this function computes the MHRD
#' of its elements, i.e.:
#'
#' \deqn{MHRD(X(t)) = \min( MEI( X(t) ), MHI(X(t)) ),}
#'
#' where \eqn{MEI(X(t))} indicates the Modified Epigraph Index (MEI) of
#' \eqn{X(t)} with respect to the dataset, and \eqn{MHI(X(t))} indicates the
#' Modified Hypograph Index of \eqn{X(t)} with respect to the dataset.
#'
#' @param Data either an \code{fData} object or a matrix-like dataset of
#' functional data (e.g. \code{fData$values}),
#' with observations as rows and measurements over grid points as columns.
#'
#' @return The function returns a vector containing the values of MHRD for each
#' element of the functional dataset provided in \code{Data}.
#'
#' @references
#'
#' Lopez-Pintado, S. and Romo, J. (2012). A half-region depth for functional
#' data, \emph{Computational Statistics and Data Analysis}, 55, 1679-1695.
#'
#' Arribas-Gil, A., and Romo, J. (2014). Shape outlier detection and
#' visualization for functional data: the outliergram, \emph{Biostatistics},
#' 15(4), 603-619.
#'
#' @examples
#'
#' N = 20
#' P = 1e2
#'
#' grid = seq( 0, 1, length.out = P )
#'
#' C = exp_cov_function( grid, alpha = 0.2, beta = 0.3 )
#'
#' Data = generate_gauss_fdata( N,
#'                              centerline = sin( 2 * pi * grid ),
#'                              C )
#' fD = fData( grid, Data )
#'
#' MHRD( fD )
#'
#' MHRD( Data )
#'
#' @seealso \code{\link{HRD}}, \code{\link{MEI}}, \code{\link{MHI}}
#'
#' @export
#'
MHRD = function( Data )
{
  UseMethod( 'MHRD', Data )
}


#' @rdname MHRD
#'
#' @export
MHRD.fData = function( Data )
{
  Data = Data$values
  NextMethod()
}


#' @rdname MHRD
#'
#' @export
MHRD.default = function( Data )
{
  mei = MEI( Data )

  mhi = MHI( Data )

  return( mapply( min, mei, mhi ) )
}
astamm/roahd documentation built on Feb. 9, 2022, 12:57 a.m.