| nma.diag | R Documentation | 
Produces trace plots and Gelman-Rubin and Geweke convergence diagnostics for the MCMC chains obtained from
nma.run(). The Gelman-Rubin and Geweke diagnostics are implemented using functions from the coda package.
nma.diag(
  nma,
  trace = TRUE,
  gelman.rubin = TRUE,
  geweke = TRUE,
  params = "all",
  thin = 1,
  ncol = 1,
  nrow = 3,
  plot_prompt = TRUE,
  geweke_frac1 = 0.1,
  geweke_frac2 = 0.5
)
| nma | A  | 
| trace | If TRUE, outputs trace plots. Default is TRUE. | 
| gelman.rubin | If TRUE, runs Gelman-Rubin diagnostic. Default is TRUE. | 
| geweke | If TRUE, runs Geweke diagnostic. Default is TRUE. | 
| params | Integer or character vector which specifies which parameters to produce trace plots for when trace is set to TRUE. Default is "all" which plots every monitored parameter. | 
| thin | Thinning factor for the mcmc chains when producing trace plots. Default is 1. | 
| ncol | Number of columns in each batch of trace plots | 
| nrow | Number rows in each batch of trace plots | 
| plot_prompt | If TRUE, prompts the user to hit enter before plotting each additional batch of trace plots. Default is TRUE. | 
| geweke_frac1 | Fraction to use from beginning of chain. Default is 0.1. | 
| geweke_frac2 | Fraction to use from end of chain. Default is 0.5. | 
gelman.rubin An object of class gelman.rubin.results containing the Gelman-Rubin diagnostic results.
A formatted table with custom PSRF threshold can be printed using print(x, gelman.rubin.threshold = 1.2).
geweke An object of class geweke.results containing the Geweke diagnostic results. A formatted table
with custom significance level can be printed using print(x, alpha = 0.05).
nma.run
data(thrombolytic)
dich.slr <- data.prep(arm.data = thrombolytic, varname.t = "treatment", 
                      varname.s = "study")
random_effects_model <- nma.model(data=dich.slr, outcome="events", 
                                  N="sampleSize", reference="SK",
                                  family="binomial", link="log", 
                                  effects="random")
random_effects_results <- nma.run(random_effects_model, n.adapt=100, 
                                  n.burnin=0, n.iter=100)
nma.diag(random_effects_results)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.