glmSparseNet.cox: Call glmSparseNet model with Cox regression

Description Usage Arguments Value

View source: R/glmsparsenet_custom.R

Description

This is an auxiliary method for the analysis. It uses the run.cache method to cache the results and speed up analysis

Usage

1
2
3
4
glmSparseNet.cox(xdata, ydata, target.vars, alpha = 1,
  network = "correlation", xdata.digest = NULL,
  cache.prefix = "glmSparseNet.cache", force.recalc = FALSE,
  lambda.min.ratio = 0.001, ...)

Arguments

xdata

input matrix

ydata

Surival data.dataframe with time and status columns

target.vars

number of variables to target in calculations

network

network to use, could be a matrix, a degree vector or a string, see ?glmSparseNet

xdata.digest

sha256 checksum of xdata

cache.prefix

prefix for the cache files

force.recalc

force cache to be recalculated

...

additional parameters for glmnet

Value

a glmnet model


averissimo/glmSparseNetPaper documentation built on Jan. 25, 2021, 12:11 p.m.