Description Usage Arguments Value References Examples
Given gains and losses relative to a reference points, we use prospect
theory's value function to calculate the value matrix[1]. We use default values for the
parameters of diminishing sensitity and loss aversion, but this can be
inputed differently. Calculates the value function for one value at a time. The function
is used to calculate the value matrix [2] in pvMatrix
.
1 | pvalue_fun(ngain_ij, nloss_ij, alpha = 0.88, beta = 0.88, lambda = 2.25)
|
ngain_ij |
gain value corresponding to a specific attribute (j) and round (i) |
nloss_ij |
loss value corresponding to the same specific attribute and round as |
alpha |
parameter for diminishing sensitivity in the gain domain. Default value = 0.88. Usual values are in the (0,1) interval. |
beta |
parameter for diminishing sensitivity in the loss domain. Default value = 0.88. Usual values are in the (0,1) interval. |
lambda |
parameter for loss aversion. Default value = 2.25. Values for |
the output of the value function [1]
[1] Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica: Journal of the Econometric Society, 263-291.
[2] Fan, Z. P., Zhang, X., Chen, F. D., & Liu, Y. (2013). Multiple attribute decision making considering aspiration-levels: A method based on prospect theory. Computers & Industrial Engineering, 65(2), 341-350.
1 2 | pvalue_fun(3, 0)
pvalue_fun(0, -1.5, alpha =0.75, lambda=3)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.