bestimate: Bayesian finite population with BART and FPBB

Description Usage Arguments Value

Description

Bayesian finite population with BART and FPBB

Usage

1
2
3
4
5
6
bestimate(samp, ref, y_var_names, x_var_names, sp_wts = NULL,
  propensity = TRUE, prediction = TRUE, double_robust_wt = TRUE,
  double_robust_reg = TRUE, dr_propensity_transform = log,
  propensity_replicates = 1, quality_measures = TRUE,
  pred_subsample_size = 10000, posterior_draws = 1000,
  bart_params = list(mc.cores = 1, ntree = 50))

Arguments

samp

data.frame containing the survey sample data.

ref

data.frame containing the reference sample.

y_var_names

Character vector containing names of the outcome variables.

x_var_names

Character vector containing names of the covariates

posterior_draws

Number of posterior draws

sp_wt_frame

data.frame containing one column of weights for each synthetic population.

Value

Good question


awmercer/bestimate documentation built on May 22, 2019, 8:50 p.m.