#' Returns linear regression model (least squares), sum of residuals squared, total resioduals squared,
#' y-hat predicted values, residuals squared, total squares given vectors x, y
#'
#' @param vector x for independent variable values
#' @param vector y for dependent varaible values
#'
#' @return data frame containing linear regression results, including R^2.
#' @export
linear_regression = function(x, y) {
beta_1_hat <- cov(x, y) / var(x)
beta_0_hat <- mean(y) - beta_1_hat * mean(x)
y_hat = beta_0_hat + x * beta_1_hat
residuals_sq = (y - y_hat)^2
SSR = sum(residuals)
squares = (y - mean(y))^2
TSS = sum(squares)
R_sq = 1 - (SSR / TSS)
return (data.frame("R_sq" = R_sq,
"SSR" = SSR,
"TSS" = TSS,
"x" = x,
"y" = y,
"y-hat" = y_hat,
"resid_sq" = residuals_sq,
"total squares" = squares))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.