Gnls: Generalized nonlinear least squares parameter estimates

Description Usage Arguments Value Author(s) See Also

View source: R/Gnls.R

Description

Calculate the generalized least squares parameter estimates of a nonlinear model.

Usage

1
Gnls(model.name,y.obs,var.inv,par,x=list(),...)

Arguments

model.name

name of the function representing the model (note that this model requires the parameters to be specified explicitly in the function headers)

y.obs

observed data corresponding to model output

var.inv

inverse variance-covariance matrix of the multivariate normal distribution that characterizes the error model

par

named parameter vector with initial values passed to the model as separate arguments

x

list of named inputs passed to the model

...

additional arguments passed to nls

Value

Returns a list containing:

model.name

name of the function representing the model

par

named parameter vector with parameter estimates

y.obs

observed data corresponding to model output

y.det

deterministic model results corresponding to the estimated parameters

resid

residuals

var.inv

inverse variance-covariance matrix of the multivariate normal distribution that characterizes the error model

x

input object passed as first argument to the model

res.nls

results from application of the nls function

Author(s)

Peter Reichert <peter.reichert@eawag.ch>

See Also

Gnls, Gnls.diag, Gnls.test, Gnls.predict, Confint


baccione-eawag/EawagSchoolTools documentation built on Dec. 19, 2021, 6:38 a.m.