Description Usage Arguments Value Author(s) See Also
Calculate the generalized least squares parameter estimates of a nonlinear model.
1 |
model.name |
name of the function representing the model (note that this model requires the parameters to be specified explicitly in the function headers) |
y.obs |
observed data corresponding to model output |
var.inv |
inverse variance-covariance matrix of the multivariate normal distribution that characterizes the error model |
par |
named parameter vector with initial values passed to the model as separate arguments |
x |
list of named inputs passed to the model |
... |
additional arguments passed to |
Returns a list containing:
model.name |
name of the function representing the model |
par |
named parameter vector with parameter estimates |
y.obs |
observed data corresponding to model output |
y.det |
deterministic model results corresponding to the estimated parameters |
resid |
residuals |
var.inv |
inverse variance-covariance matrix of the multivariate normal distribution that characterizes the error model |
x |
input object passed as first argument to the model |
res.nls |
results from application of the |
Peter Reichert <peter.reichert@eawag.ch>
Gnls
, Gnls.diag
, Gnls.test
, Gnls.predict
, Confint
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.