knitr::opts_chunk$set(echo = TRUE) library(tidyr) library(SingleCellExperiment) library(tibble) library(ggplot2) library(dplyr)
se = readRDS("~/Downloads/se_ideal_toiSEE.rds") raw = assays(se)[["counts"]] raw_long = raw %>% as_tibble() %>% tibble::add_column(gene = rownames(raw)) %>% pivot_longer(!gene,names_to = "sample", values_to = "count") %>% filter(sample %in% c("D4g_O_P_N_f","D4g_O_P_A_f","D4g_O_P_P_f", "D4g_O_P_L_f")) p <- ggplot(raw_long, aes(x=sample, y=count)) + geom_violin() p raw_long$sample = as.factor(raw_long$sample) raw_long2 = raw_long p <- ggplot(raw_long2, aes(x=sample, y=count)) + geom_violin() p raw_long2 = raw_long2 %>% filter(count >5) raw_long2 = raw_long2 %>% filter(count < 1000) p <- ggplot(raw_long2, aes(x=sample, y=count)) + geom_violin() p
se = readRDS("~/Downloads/se_ideal_toiSEE.rds") nCount = assays(se)[["normcounts"]] nCount_long = nCount %>% as_tibble() %>% tibble::add_column(gene = rownames(raw)) %>% pivot_longer(!gene,names_to = "sample", values_to = "count") %>% filter(sample %in% c("D4g_O_P_N_f","D4g_O_P_A_f","D4g_O_P_P_f", "D4g_O_P_L_f")) p <- ggplot(nCount_long, aes(x=sample, y=count)) + geom_violin() p nCount_long$sample = as.factor(nCount_long$sample) nCount_long2 = nCount_long p <- ggplot(nCount_long2, aes(x=sample, y=count)) + geom_violin() p nCount_long2 = nCount_long2 %>% filter(count >5) nCount_long2 = nCount_long2 %>% filter(count < 1000) p <- ggplot(nCount_long2, aes(x=sample, y=count)) + geom_violin() p
cp = load("~/Downloads/idealState_20221122_093219.RData") dds = r_data$dds_obj co = coef(dds) colnames(co) hist(co[,3], breaks=1000, main="LPS_vs_null", xlab = "coeffient")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.