Description Usage Arguments Note Examples
Estimate ANOVA-type mixed models with rstanarm
1 2 3 | stanova_lmer(formula, data, check_contrasts = "contr.bayes", ...)
stanova_glmer(formula, data, family, check_contrasts = "contr.bayes", ...)
|
formula |
a formula describing the full mixed-model to be fitted. Passed
to |
data |
|
check_contrasts |
|
... |
further arguments passed to the |
family |
|
These functions are only wrappers around stanova
setting
model_fun
to "glmer"
(and family = "gaussian"
for stanova_lmer
).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | ### examples generally use stanova(.., model_fun = "glmer")
## this can be replaced by the stanova_lmer or stanove_glmer
data("Machines", package = "MEMSS")
## better formula would be: score ~ Machine + (Machine|Worker)
m_machines <- stanova(score ~ Machine + (1|Worker),
model_fun = "glmer",
data=Machines, chains = 2,
warmup = 250, iter = 750)
summary(m_machines) ## default: difference from intercept
summary(m_machines, diff_intercept = FALSE) ## alt: marginal means
out_array <- stanova_samples(m_machines)
str(out_array)
out_array2 <- stanova_samples(m_machines, dimension_chain = 2)
str(out_array2)
bayesplot::mcmc_trace(out_array2$`(Intercept)`)
bayesplot::mcmc_trace(out_array2$Machine)
out_df <- stanova_samples(m_machines, return = "data.frame")
str(out_df)
data("obk.long", package = "afex")
m2 <- stanova_lmer(value ~ treatment * phase + (1|id), obk.long,
chains = 2, iter = 500)
m2
summary(m2)
## with continuous variable
data(md_16.4, package = "afex")
md_16.4$cog <- scale(md_16.4$cog, scale=FALSE)
m_cont0 <- stanova(induct ~ cog + (cog|room:cond), md_16.4,
model_fun = "glmer", chains = 2, iter = 500)
summary(m_cont0)
# with interaction:
m_cont1 <- stanova(induct ~ cond*cog + (cog|room:cond), md_16.4,
model_fun = "glmer", chains = 2, iter = 500)
summary(m_cont1)
summary(m_cont1, diff_intercept = TRUE)
### glmer models
## binomial model
cbpp <- lme4::cbpp
cbpp$prob <- with(cbpp, incidence / size)
example_model <- stanova(prob ~ period + (1|herd),
data = cbpp, family = binomial,
weight = size, model_fun = "glmer",
chains = 2, cores = 1, seed = 12345, iter = 500)
summary(example_model)
## poisson model
data(Salamanders, package = "glmmTMB")
gm1 <- stanova(count~spp * mined + (1 | site), data = Salamanders,
family = "poisson", model_fun = "glmer",
chains = 2, cores = 1, seed = 12345, iter = 500)
summary(gm1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.