Description Usage Arguments Value Examples
Fit a structured angle-based multicategory support vector machine with reinforced multicategory loss.
| 1 2 3 4 5 6 7 | sramsvm(x = NULL, y, gamma = 0.5, valid_x = NULL, valid_y = NULL, nfolds = 5,
	 lambda_seq = 2^{seq(-10, 10, length.out = 100)},
	 lambda_theta_seq = 2^{seq(-10, 10, length.out = 100)},
	 kernel = c("linear", "gaussian", "gaussian2", "poly", "spline", "spline2", "spline-t"), kparam = 1,
	 scale = FALSE, criterion = c("0-1", "loss"),
	 isCombined = FALSE, cv_type = c("original", "osr"), type = c("type1", "type2"), 
	 optModel = FALSE, nCores = 1, verbose = 1, ...)
 | 
| x | A n x p data matrix, where n is the number of observations and p is the number of variables. | 
| y | A response variable with three and more labels. | 
| gamma | The convex combination parameter of the loss function. | 
| valid_x | A validation data matrix for selecting  | 
| valid_y | A validation response vector (optional). | 
| nfolds | The number of folds for cross-validation. | 
| lambda_seq | A sequence of regularization parameter to control a level of l_2-penalty. | 
| lambda_theta_seq | A sequence of regularization parameter on theta's, which are weights for kernels. | 
| kernel | A character string representing one of type of kernel. | 
| kparam | A parameter needed for kernel. | 
| scale | A logical indicating the variables to be scaled. | 
| criterion | A type of criterion evaluating prediction performance of cross-validation. | 
| isCombined | A logical. If  | 
| cv_type | A rule of selecting lambda_theta parameter. If  | 
| type | A type of optimization method for ramsvm. If  | 
| optModel | A logical. Whether to obtain the optimal classification model. | 
| nCores | The number of cores to use for parallel computing. | 
| verbose | A integer value. If  | 
| ... | Other arguments that can be passed to ramsvm core function. | 
An S3 object of class "sramsvm" containing the following slots
| opt_theta | The theta vector at the optimal lambda_theta value. | 
| cstep_inform | Information of c-step including cross-validation errors and optimal lambda value. | 
| theta_step_inform | Information of theta-step including cross-validation errors and optimal lambda_theta value. | 
| opt_model | If  | 
| opt_valid_err | If  | 
| valid_err | If  | 
| cv_type | A rule of selecting lambda_theta. | 
| call | The call of  | 
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | require(dbvsmsvm)
n = 100; p = 10;
data = dbvsmsvm:::sim_gen(n = n, p = p, type = "linear")
x = scale(data$x)
y = data$y
sigma = kernlab::sigest(y ~ x, scaled = FALSE)[3]
# Fit the SRAMSVM with the linear kernel
sram_linear = sramsvm(x = x, y = y, gamma = 0.5, nfolds = 5,
                      lambda_seq = 2^{seq(-20, 0, length.out = 100)},
                      lambda_theta_seq = 2^{seq(-20, 0, length.out = 100)},
                      kernel = "linear", scale = FALSE, criterion = "0-1",
                      isCombined = TRUE, cv_type = "osr", nCores = 1)
# Fit the SRAMSVM with the Gaussian kernel
sram_radial = sramsvm(x = x, y = y, gamma = 0.5, nfolds = 5,
                      lambda_seq = 2^{seq(-20, 0, length.out = 100)},
                      lambda_theta_seq = 2^{seq(-20, 0, length.out = 100)},
                      kernel = "gaussian", kparam = sigma, scale = FALSE, criterion = "0-1",
                      isCombined = TRUE, cv_type = "osr", nCores = 1)
# Fit the SRAMSVM with the Gaussian kernel with second-order interaction
sram_radial_interaction = sramsvm(x = x, y = y, gamma = 0.5, nfolds = 5,
                      lambda_seq = 2^{seq(-20, 0, length.out = 100)},
                      lambda_theta_seq = 2^{seq(-20, 0, length.out = 100)},
                      kernel = "gaussian2", kparam = sigma, scale = FALSE, criterion = "0-1",
                      isCombined = TRUE, cv_type = "osr", nCores = 1)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.