afni_hrf | construct an native AFNI hrf specification for '3dDeconvolve'... |
AFNI_HRF-class | AFNI HRF Constructor Function |
afni_lm | Set up an fMRI linear model for AFNI's 3dDeconvolve |
afni_trialwise | construct a native AFNI hrf specification for '3dDeconvolve'... |
amplitudes | Get event amplitudes from an object |
ar_parameters | Extract Estimated AR Parameters from fmri_lm Fit |
ar_whiten_inplace | AR(p) whitening of data and design matrices |
autoplot | Autoplot method for Reg objects |
baseline | Create a Baseline Specification |
baseline_model | Construct a Baseline Model |
baseline_terms | Extract baseline terms from a model |
basis_suffix | Create Basis Function Suffix |
block | Create a Block Variable |
BSpline | B-spline basis |
build_afni_stims | Build AFNI stimulus definitions |
cells | The experimental cells of a design |
chunkwise_lm.fmri_dataset | Perform Chunkwise Linear Modeling on fMRI Dataset |
chunkwise_lm.fmri_dataset_old | Perform Chunkwise Linear Modeling on fMRI Dataset |
column_contrast | Column Contrast Specification |
columns | Extract Column Names or Identifiers |
condition_basis_list | Convert an 'event_term' to a per-condition basis list |
conditions | Conditions |
construct.afni_hrfspec | Construct AFNI HRF specification |
construct.afni_trialwise_hrfspec | Construct AFNI trialwise HRF specification |
contrast | Contrast Specification |
contrast_set | Create a Set of Contrasts |
contrast_weights | Calculate contrast weights for a given contrast specification... |
contrast_weights.column_contrast_spec | Column Contrast Weights |
contrast_weights.contrast_diff_spec | Contrast Difference Weights |
contrast_weights.contrast_formula_spec | Contrast Formula Weights |
contrast_weights.contrast_set | Contrast Weights for a Contrast Set |
contrast_weights.interaction_contrast_spec | Interaction Contrast Weights |
contrast_weights.oneway_contrast_spec | One-way Contrast Weights |
contrast_weights.pair_contrast_spec | Pair Contrast Weights |
contrast_weights.poly_contrast_spec | Polynomial Contrast Weights |
contrast_weights.unit_contrast_spec | Unit Contrast Weights |
convolve | Convolve a term with a hemodynamic response function |
convolve_design | Convolve HRF with Design Matrix. |
correlation_map | correlation_map |
correlation_map.baseline_model | correlation_map.baseline_model |
correlation_map.fmri_model | correlation_map.fmri_model |
covariate | Construct a Covariate Term |
create_design_matrix_from_benchmark | Create Design Matrix from Benchmark Dataset |
create_fmri_model | Create an fmri_model from a Formula |
design_map | Visualize the entire design matrix as a heatmap |
design_map.baseline_model | Heatmap visualization of the baseline_model design matrix |
design_map.fmri_model | Heatmap visualization of the combined fmri_model design... |
design_matrix | design_matrix |
design_plot | Design Plot for fMRI Model |
dot-resample_param | Simulate fMRI Time Courses, Return Shared Onsets +... |
dot-trial_factor | Internal helper for generating trial factors |
durations | Get event durations from an object |
elements | elements |
estimate_betas | Estimate Beta Coefficients for fMRI Data |
estimate_betas.fmri_dataset | Estimate betas using various regression methods |
estimate_betas.matrix_dataset | Estimate betas for a matrix dataset |
estimate_hrf | Estimate hemodynamic response function (HRF) using... |
evaluate_method_performance | Evaluate Method Performance on Benchmark Dataset |
event_basis | Create an event set from a ParametricBasis object. |
event_factor | Create a categorical event sequence from a factor. |
event_matrix | Create a continuous event set from a matrix. |
event_model | Construct an event model |
event_table | Extract event table from a term or model |
event_term | Create an event model term from a named list of variables. |
event_terms | Extract event terms from a model |
event_variable | Create a continuous event sequence from a numeric vector. |
Fcontrasts | Get block/run indices |
feature_suffix | Create Feature Suffix |
fit_contrasts | Fit Contrasts |
fit_contrasts.default | Fit Contrasts for Linear Model (Default Method) |
fit_contrasts.fmri_lm | Fit Contrasts for fMRI Linear Model Objects |
fit_lm_contrasts | Fit Linear Model Contrasts |
fitted_hrf | Evaluate a regressor object over a time grid |
fitted_hrf.fmri_lm | Extract HRF from Fitted Model |
fmri_benchmark_datasets | Benchmark fMRI datasets |
fmri_latent_lm | Fast fMRI Regression Model Estimation from a Latent Component... |
fmri_lm | Fit a Linear Regression Model for fMRI Data Analysis |
fmri_lm_control | Configuration for fmri_lm fitting |
fmri_lm_fit | Fit an fMRI Linear Regression Model with a Specified Fitting... |
fmri_model | Construct an fMRI Regression Model |
fmrireg-package | fmrireg: regression tools for fMRI data |
fmri_rlm | Fit a Robust Linear Model for fMRI Data Analysis |
gen_afni_lm | generate an AFNI linear model command from a configuration... |
generate_interaction_contrast | Fast factorial contrast generators |
get_benchmark_summary | Get Benchmark Dataset Summary |
get_formula | Model Utilities for fmri_model Objects |
glm_lss | GLM LSS Estimation Convenience Function (Single Trial... |
glm_ols | GLM OLS Estimation Convenience Function |
hrf | hemodynamic regressor specification function for model... |
hrf_from_coefficients | Combine HRF Basis with Coefficients |
hrf_smoothing_kernel | Compute an HRF smoothing kernel |
Ident | Ident |
interaction_contrast | Interaction Contrast |
is_categorical | Check if a variable is categorical |
is_continuous | Check if a variable is continuous |
labels.event | Get Formatted Labels for a Single Event |
levels.event | Extract Levels from fmrireg Objects |
list_benchmark_datasets | List Available Benchmark Datasets |
load_benchmark_dataset | Load fMRI Benchmark Datasets |
longnames | Extract Long Names of Variable Levels |
mixed_solve_cpp | Mixed Model Solver using Rcpp and roptim |
multiresponse_bootstrap_lm | Multiresponse bootstrap linear model |
multiresponse_lm | Fit Multiresponse Linear Model |
nbasis | Return the global onsets of an object |
neural_input | Generate Neural Input Function from Event Timing |
nuisance | Create a Nuisance Specification |
one_against_all_contrast | One Against All Contrast |
oneway_contrast | One-way Contrast |
onsets | Return a set of data chunks |
pair_contrast | Pair Contrast |
pairwise_contrasts | Pairwise Contrasts |
penalty_matrix | Generate penalty matrix for regularization |
plot.baseline_model | Plot a Baseline Model |
plot_contrasts | plot_contrasts |
plot_contrasts.event_model | plot_contrasts.event_model |
Poly | Polynomial basis |
poly_contrast | Polynomial Contrast |
predict | Predict from a ParametricBasis object |
Print a Baseline Model | |
pull_stat_revised | Extract Statistical Measures from an fmri_lm Object |
p_values | Extract P-values from a Model Fit |
reconstruction_matrix | Reconstruction matrix for an HRF basis |
reexports | Objects exported from other packages |
regressors | Extract regressor set |
reshape_coef | Reshape Coefficient Data |
RobustScale | Robust Scaling (Median/MAD) |
run.afni_lm_spec | Run an afni_lm_spec object |
runwise_lm | Perform Runwise Linear Modeling on fMRI Dataset |
sandwich_variance | Sandwich Variance Estimation in fmrireg |
sanitize | Sanitize Strings for Use in R Names |
Scale | Z-score (global) basis |
ScaleWithin | Z-score within groups |
shift | Shift a time series object |
shortnames | Short Names |
simulate_bold_signal | Simulate fMRI Time Series |
simulate_noise_vector | Simulate fMRI Noise |
simulate_simple_dataset | Simulate Complete fMRI Dataset |
split_by_block | Extract sampling times |
split_onsets | Split Event Onsets into Lists by Factor Levels or Blocks |
standard_error | Extract Standard Errors from a Model Fit |
Standardized | Standardized basis |
stats | Extract Test Statistics from a Model Fit |
sub_basis | sub_basis |
term_indices | Get term indices from a model or term |
term_matrices | term_matrices |
to_glt | convert a contrast to an AFNI 'GLT' |
to_glt.contrast | Convert Contrast to GLT |
translate_legacy_pattern | Translate legacy contrast regex patterns |
trialwise | trialwise |
unit_contrast | Unit Contrast |
write_glt | Write GLT to File |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.