Description Usage Arguments Value References See Also
A function to estimate the inhomogeneous K function for a spatiotemporal point process. The method of computation is similar to ginhomAverage, see eq (8) Diggle P, Rowlingson B, Su T (2005) to see how this is computed.
1 2 3  | KinhomAverage(xyt, spatial.intensity, temporal.intensity,
  time.window = xyt$tlim, rvals = NULL, correction = "iso",
  suppresswarnings = FALSE)
 | 
xyt | 
 an object of class stppp  | 
spatial.intensity | 
 A spatialAtRisk object  | 
temporal.intensity | 
 A temporalAtRisk object  | 
time.window | 
 time interval contained in the interval xyt$tlim over which to compute average. Useful if there is a lot of data over a lot of time points.  | 
rvals | 
 Vector of values for the argument r at which the inhmogeneous K function should be evaluated (see ?Kinhom). There is a sensible default.  | 
correction | 
 choice of edge correction to use, see ?Kinhom, default is Ripley isotropic correction  | 
suppresswarnings | 
 Whether or not to suppress warnings generated by Kinhom  | 
time average of inhomogenous K function.
Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, Peter J. Diggle (2013). Journal of Statistical Software, 52(4), 1-40. URL http://www.jstatsoft.org/v52/i04/
Baddeley AJ, Moller J, Waagepetersen R (2000). Non-and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 54, 329-350.
Brix A, Diggle PJ (2001). Spatiotemporal Prediction for log-Gaussian Cox processes. Journal of the Royal Statistical Society, Series B, 63(4), 823-841.
Diggle P, Rowlingson B, Su T (2005). Point Process Methodology for On-line Spatio-temporal Disease Surveillance. Environmetrics, 16(5), 423-434.
ginhomAverage, spatialparsEst, thetaEst, lambdaEst, muEst
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.