View source: R/generatePartialDependence.R
generatePartialDependenceData | R Documentation |
Estimate how the learned prediction function is affected by one or more features. For a learned function f(x) where x is partitioned into x_s and x_c, the partial dependence of f on x_s can be summarized by averaging over x_c and setting x_s to a range of values of interest, estimating E_(x_c)(f(x_s, x_c)). The conditional expectation of f at observation i is estimated similarly. Additionally, partial derivatives of the marginalized function w.r.t. the features can be computed.
generatePartialDependenceData(
obj,
input,
features = NULL,
interaction = FALSE,
derivative = FALSE,
individual = FALSE,
fun = mean,
bounds = c(qnorm(0.025), qnorm(0.975)),
uniform = TRUE,
n = c(10, NA),
...
)
obj |
(WrappedModel) |
input |
(data.frame | Task) |
features |
character |
interaction |
( |
derivative |
( |
individual |
( |
fun |
A function which operates on the output on the predictions made on the |
bounds |
( |
uniform |
( |
n |
( |
... |
additional arguments to be passed to mmpf::marginalPrediction. |
PartialDependenceData. A named list, which contains the partial dependence, input data, target, features, task description, and other arguments controlling the type of partial dependences made.
Object members:
data |
data.frame |
task.desc |
TaskDesc |
target |
Target feature for regression, target feature levels for classification, survival and event indicator for survival. |
features |
character |
interaction |
( |
derivative |
( |
individual |
( |
Goldstein, Alex, Adam Kapelner, Justin Bleich, and Emil Pitkin. “Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation.” Journal of Computational and Graphical Statistics. Vol. 24, No. 1 (2015): 44-65.
Friedman, Jerome. “Greedy Function Approximation: A Gradient Boosting Machine.” The Annals of Statistics. Vol. 29. No. 5 (2001): 1189-1232.
Other partial_dependence:
plotPartialDependence()
Other generate_plot_data:
generateCalibrationData()
,
generateCritDifferencesData()
,
generateFeatureImportanceData()
,
generateFilterValuesData()
,
generateLearningCurveData()
,
generateThreshVsPerfData()
,
plotFilterValues()
lrn = makeLearner("regr.svm")
fit = train(lrn, bh.task)
pd = generatePartialDependenceData(fit, bh.task, "lstat")
plotPartialDependence(pd, data = getTaskData(bh.task))
lrn = makeLearner("classif.rpart", predict.type = "prob")
fit = train(lrn, iris.task)
pd = generatePartialDependenceData(fit, iris.task, "Petal.Width")
plotPartialDependence(pd, data = getTaskData(iris.task))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.