View source: R/MultilabelNestedStackingWrapper.R
makeMultilabelNestedStackingWrapper | R Documentation |
Every learner which is implemented in mlr and which supports binary classification can be converted to a wrapped nested stacking multilabel learner. Nested stacking trains a binary classifier for each label following a given order. In training phase, the feature space of each classifier is extended with predicted label information (by cross validation) of all previous labels in the chain. During the prediction phase, predicted labels are obtained by the classifiers, which have been learned on all training data.
Models can easily be accessed via getLearnerModel.
makeMultilabelNestedStackingWrapper(learner, order = NULL, cv.folds = 2)
learner |
(Learner | |
order |
(character) |
cv.folds |
( |
Learner.
Montanes, E. et al. (2013), Dependent binary relevance models for multi-label classification Artificial Intelligence Center, University of Oviedo at Gijon, Spain.
Other wrapper:
makeBaggingWrapper()
,
makeClassificationViaRegressionWrapper()
,
makeConstantClassWrapper()
,
makeCostSensClassifWrapper()
,
makeCostSensRegrWrapper()
,
makeDownsampleWrapper()
,
makeDummyFeaturesWrapper()
,
makeExtractFDAFeatsWrapper()
,
makeFeatSelWrapper()
,
makeFilterWrapper()
,
makeImputeWrapper()
,
makeMulticlassWrapper()
,
makeMultilabelBinaryRelevanceWrapper()
,
makeMultilabelClassifierChainsWrapper()
,
makeMultilabelDBRWrapper()
,
makeMultilabelStackingWrapper()
,
makeOverBaggingWrapper()
,
makePreprocWrapperCaret()
,
makePreprocWrapper()
,
makeRemoveConstantFeaturesWrapper()
,
makeSMOTEWrapper()
,
makeTuneWrapper()
,
makeUndersampleWrapper()
,
makeWeightedClassesWrapper()
Other multilabel:
getMultilabelBinaryPerformances()
,
makeMultilabelBinaryRelevanceWrapper()
,
makeMultilabelClassifierChainsWrapper()
,
makeMultilabelDBRWrapper()
,
makeMultilabelStackingWrapper()
d = getTaskData(yeast.task)
# drop some labels so example runs faster
d = d[seq(1, nrow(d), by = 20), c(1:2, 15:17)]
task = makeMultilabelTask(data = d, target = c("label1", "label2"))
lrn = makeLearner("classif.rpart")
lrn = makeMultilabelBinaryRelevanceWrapper(lrn)
lrn = setPredictType(lrn, "prob")
# train, predict and evaluate
mod = train(lrn, task)
pred = predict(mod, task)
performance(pred, measure = list(multilabel.hamloss, multilabel.subset01, multilabel.f1))
# the next call basically has the same structure for any multilabel meta wrapper
getMultilabelBinaryPerformances(pred, measures = list(mmce, auc))
# above works also with predictions from resample!
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.