# FIXME
# makeRLearner.regr.sg.libsvm = function() {
# makeRLearnerRegr(
# cl = "regr.sg.libsvm",
# package = "sg",
# missings = FALSE,
# numerics = TRUE,
# factors = FALSE,
# se = FALSE,
# weights = FALSE
# )
# }
#
# trainLearner.regr.sg.libsvm = function(.learner, .task, .subset, ...) {
# size_cache = 100
# d = getTaskData(.task, .subset, target.extra=TRUE, class.as="-1+1")
# # shogun wants features in as column vectors
# train = t(d(as.matrix(d$data)))
# pars = list(...)
# sg('set_features', 'TRAIN', train)
# sg('set_labels', 'TRAIN', y)
# sg('new_regression', pars$type)
# sg.setHyperPars(pars)
# sg('train_regression')
# svm = sg('get_svm')
# # todo: saving traindat is very inefficient....
# names(svm) = c("bias", "alphas")
# list(svm=svm, control=pars, traindat=train, y=y)
# }
#
#
# sg.setHyperPars = function(control) {
# sg('set_kernel', 'GAUSSIAN', 'REAL', control$size_cache, control$width)
# sg('svr_tube_epsilon', control$epsilon)
# }
#
# predictLearner.regr.sg.libsvm = function(.learner, .model, .newdata, ...) {
# # shogun wants features in as column vectors
# .newdata = t(as.matrix(.newdata))
# m = .model$learner.model
# sg('set_features', 'TRAIN', m$traindat)
# sg('set_labels', 'TRAIN', m$y)
# sg('set_features', 'TEST', .newdata)
# sg('set_svm', m$svm$bias, m$svm$alphas)
# ctrl = m$control
# sg.setHyperPars(ctrl)
# sg('classify')
# }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.