remotes::install_github("ManonMartin/LMWiRe", dependencies = TRUE)
library("LMWiRe")
UCH
datasetstr(UCH)
#> List of 3
#> $ design :'data.frame': 34 obs. of 5 variables:
#> ..$ Hippurate: Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 2 2 2 2 ...
#> ..$ Citrate : Factor w/ 3 levels "0","2","4": 1 1 2 2 3 3 1 1 2 2 ...
#> ..$ Dilution : Factor w/ 1 level "diluted": 1 1 1 1 1 1 1 1 1 1 ...
#> ..$ Day : Factor w/ 2 levels "2","3": 1 1 1 1 1 1 1 1 1 1 ...
#> ..$ Time : Factor w/ 2 levels "1","2": 1 2 1 2 1 2 1 2 1 2 ...
#> $ outcomes: num [1:34, 1:600] 0.0312 0.0581 0.027 0.0341 0.0406 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:34] "M2C00D2R1" "M2C00D2R2" "M2C02D2R1" "M2C02D2R2" ...
#> .. ..$ X1: chr [1:600] "9.9917004" "9.9753204" "9.9590624" "9.9427436" ...
#> $ formula : chr "outcomes ~ Hippurate + Citrate + Time + Hippurate:Citrate + Time:Hippurate + Time:Citrate + Hippurate:Citrate:Time"
# design
plotDesign(design = UCH$design, x = "Hippurate",
y = "Citrate", rows = "Time",
title = "Design of the UCH dataset")
# row 3 of outcomes
plotLine(Y = UCH$outcomes,
title = "H-NMR spectrum",
rows = c(3),
xlab = "ppm",
ylab = "Intensity")
ResPCA = pcaBySvd(UCH$outcomes)
pcaScreePlot(ResPCA, nPC = 6)
pcaScorePlot(resPcaBySvd = ResPCA, axes = c(1,2),
title = "PCA scores plot: PC1 and PC2",
design = UCH$design,
color = "Hippurate", shape = "Citrate",
points_labs_rn = FALSE)
# Model matrix generation
resMM = lmwModelMatrix(UCH)
# Model estimation and effect matrices decomposition
resEM = lmwEffectMatrices(resMM)
# Effects importance
resEM$varPercentagesPlot
# Bootstrap tests
resBT = lmwBootstrapTests(resLmwEffectMatrices = resEM, nboot=100)
resBT$resultsTable
#> Hippurate Citrate Time Hippurate:Citrate
#> Bootstrap p-values "< 0.01" "< 0.01" "< 0.01" "0.11"
#> % of variance (T III) "39.31" "29.91" "16.24" "1.54"
#> Hippurate:Time Citrate:Time Hippurate:Citrate:Time
#> Bootstrap p-values "< 0.01" "0.43" "0.08"
#> % of variance (T III) "6.23" "0.54" "1.68"
#> Residuals
#> Bootstrap p-values "-"
#> % of variance (T III) "4.3"
# ASCA-E decomposition
resASCAE = lmwPcaEffects(resLmwEffectMatrices = resEM, method="ASCA-E")
# Scores Plot for the hippurate
lmwScorePlot(resASCAE, effectNames = "Hippurate",
color = "Hippurate", shape = "Hippurate")
# Loadings Plot for the hippurate
lmwLoading1dPlot(resASCAE, effectNames = c("Hippurate"),
axes = 1, xlab = "ppm")
#> $Hippurate
# Scores ScatterPlot matrix
lmwScoreScatterPlotM(resASCAE,PCdim=c(1,1,1,1,1,1,1,2),
modelAbbrev = TRUE,
varname.colorup = "Citrate",
varname.colordown = "Time",
varname.pchup="Hippurate",
varname.pchdown="Time",
title = "ASCA scores scatterplot matrix")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.