calQval | R Documentation |
This function uses the MaAsLin2 package for estimating q-value of differential abundance. Multiple fixed and random effects can be specified for fitting the multiple regression model. Default analysis method is "LM". Can be run on multiple cores. metadata_variable and ref (reference group) should be the same as the one specified for effect size calculation.
calQval(
se,
mod.assn,
metadata_variable = 1,
fixed_effects = NULL,
random_effects = NULL,
reference = NULL,
output_folder = NULL,
cores = 1,
plot_heatmap = TRUE,
plot_scatter = FALSE,
heatmap_first_n = 50
)
se |
SummarizedExperiment object created using Macarron::prepInput(). |
mod.assn |
the output of Macarron::findMacMod(). |
metadata_variable |
name or index of metadata column identifying phenotypes/conditions to be used for differential abundance testing. Default: Column 1 of metadata dataframe Note: metadata_variable must be consistent across ava, q-value and effect-size calculations. |
fixed_effects |
fixed effects, comma delimited e.g. c("metadata1","metadata2"). Default: all columns in metadata. |
random_effects |
random effects, comma delimited. Default: NULL. |
reference |
a reference level/group in each metadata column with more than 3 levels, semi-colon delimited for multiple variables e.g. c("metadata1,ref1";"metadata2,ref2"). Default: alphabetically first phenotype/condition will be used as reference. Note: Reference must be specified for metadata with more than 2 levels. |
output_folder |
the name of the output folder where all MaAsLin2 results will be written. Default: maaslin2_output |
cores |
the number of R processes to run in parallel. |
plot_heatmap |
Maaslin2 option-Generate a heatmap for the significant associations. Default: TRUE |
plot_scatter |
Maaslin2 option-Generate scatter plots for the significant associations. Default: FALSE |
heatmap_first_n |
Maaslin2 option-Generate heatmap for top n significant associations. Default: 50 |
mac.qval q-value of metabolic features in phenotypes of interest.
prism_abundances = system.file("extdata", "demo_abundances.csv", package="Macarron")
abundances_df = read.csv(file = prism_abundances, row.names = 1)
prism_annotations = system.file("extdata", "demo_annotations.csv", package="Macarron")
annotations_df = read.csv(file = prism_annotations, row.names = 1)
prism_metadata = system.file("extdata", "demo_metadata.csv", package="Macarron")
metadata_df = read.csv(file = prism_metadata, row.names = 1)
met_taxonomy = system.file("extdata", "demo_taxonomy.csv", package="Macarron")
taxonomy_df = read.csv(file = met_taxonomy)
mbx <- Macarron::prepInput(input_abundances = abundances_df,
input_annotations = annotations_df,
input_metadata = metadata_df)
w <- Macarron::makeDisMat(se = mbx)
modules.assn <- Macarron::findMacMod(se = mbx,
w = w,
input_taxonomy = taxonomy_df)
mets.qval <- Macarron::calQval(se = mbx,
mod.assn = modules.assn)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.