View source: R/fitPriorParametersGPS.R
fitPriorParametersGPS | R Documentation |
Fits the prior parameters to the data for the Gamma Poisson shrinker (GPS). The initial guess for the parameter values are set the same as by DuMouchel (1999).
fitPriorParametersGPS(
a,
b,
c,
d,
E = ((a + b) * (a + c))/(a + b + c + d),
alpha1 = 0.2,
beta1 = 0.1,
alpha2 = 2,
beta2 = 4,
w = 1/3
)
a |
A vector with the counts of the upper left corner of the tables |
b |
A vector with the counts of the lower left corner of the tables |
c |
A vector with the counts of the upper right corner of the tables |
d |
A vector with the counts of the lower right corner of the tables |
E |
Passed to |
alpha1 |
Prior parameter |
beta1 |
Prior parameter |
alpha2 |
Prior parameter |
beta2 |
Prior parameter |
w |
Prior parameter |
A list with the prior parameters
DuMouchel, W. (1999). Bayesian Data Mining in Large Frequency Tables, with an Application to the FDA Spontaneous Reporting System. The American Statistician, 53(3), 177–190. https://doi.org/10.1080/00031305.1999.10474456
DuMouchel, W., & Pregibon, D. (2001). Empirical bayes screening for multi-item associations. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’01, (October), 67–76. http://doi.org/10.1145/502512.502526
loglikelihood2NegativeBinomial()
a <- srdata$tables$a
b <- srdata$tables$b
c <- srdata$tables$c
d <- srdata$tables$d
fitPriorParametersGPS(a, b, c, d)
# $alpha1
# [1] 98.28478
#
# $beta1
# [1] 16.48081
#
# $alpha2
# [1] 16.61439
#
# $beta2
# [1] 18.00642
#
# $w
# [1] 0.06132586
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.