LEEW: Log-Extended Exp-Weibull Distribution

Description Usage Arguments Value Author(s) References Examples

Description

These functions provide density and distribution function of the Log-Extended Exp-Weibull distribution due to Alizadeh et al. (2018) specified by the pdf

f(y;α,β,μ,σ)= \frac{\exp≤ft(\frac{y-μ}{σ}-{\rm e}^{\frac{y-μ}{σ}} \right)≤ft[1-\exp≤ft(-{\rm e}^{\frac{y-μ}{σ}}\right) \right]^{α-1} ≤ft\{α +(β-α)≤ft[1-\exp≤ft(-{\rm e}^{\frac{y-μ}{σ}}\right)\right]^β \right\}} {σ≤ft\{≤ft[1-\exp≤ft(-{\rm e}^{\frac{y-μ}{σ}}\right)\right]^α+1- ≤ft[1-\exp≤ft(-{\rm e}^{\frac{y-μ}{σ}}\right)\right]^β \right\}^2},

where α, β, σ > 0.

Usage

1
2
dLEEW(x, alpha, beta, mu = 0, sigma = 1, log = FALSE)
pLEEW(x, alpha, beta, mu = 0, sigma = 1, log = FALSE)

Arguments

x

Scaler or vector of values at which the pdf or cdf needs to be computed

alpha

The value of the first shape parameter. Must be positive and finite.

beta

The value of the second shape parameter. Must be positive and finite.

mu

Value of mean. Must be finite.

sigma

Value of standard deviations. Must be positive and finite.

log

Logical; if TRUE, probabilities p are given as log(p).

Value

An object of the same length as x, giving the pdf or cdf values computed at x.

Author(s)

Bistoon Hosseini, Mahmoud Afshari

References

Alizadeh, Morad, Mahmoud Afshari, Bistoon Hosseini, and Thiago G. Ramires. "Extended exp-G family of distributions: Properties, applications and simulation." Communications in Statistics-Simulation and Computation (2018): 1-16.

Examples

1
2
3
4
x = sort(rnorm(10, mean = -2 , sd = 1))
dLEEW(x, alpha = 0.5, beta = 1.2, mu = -2, sigma = 0.2, log = FALSE)
dLEEW(x, alpha = 0.5, beta = 1.2, mu = -2, sigma = 0.2, log = TRUE)
pLEEW(x, alpha = 0.5, beta = 1.2, mu = -2, sigma = 0.2)

bistoonh/NewDists documentation built on May 21, 2019, 11:09 a.m.