Description Usage Arguments Value Author(s) References Examples
These functions provide density and distribution function of the Log-Extended Exp-Weibull distribution due to Alizadeh et al. (2018) specified by the pdf
f(y;α,β,μ,σ)= \frac{\exp≤ft(\frac{y-μ}{σ}-{\rm e}^{\frac{y-μ}{σ}} \right)≤ft[1-\exp≤ft(-{\rm e}^{\frac{y-μ}{σ}}\right) \right]^{α-1} ≤ft\{α +(β-α)≤ft[1-\exp≤ft(-{\rm e}^{\frac{y-μ}{σ}}\right)\right]^β \right\}} {σ≤ft\{≤ft[1-\exp≤ft(-{\rm e}^{\frac{y-μ}{σ}}\right)\right]^α+1- ≤ft[1-\exp≤ft(-{\rm e}^{\frac{y-μ}{σ}}\right)\right]^β \right\}^2},
where α, β, σ > 0.
1 2 |
x |
Scaler or vector of values at which the pdf or cdf needs to be computed |
alpha |
The value of the first shape parameter. Must be positive and finite. |
beta |
The value of the second shape parameter. Must be positive and finite. |
mu |
Value of mean. Must be finite. |
sigma |
Value of standard deviations. Must be positive and finite. |
log |
Logical; if TRUE, probabilities p are given as log(p). |
An object of the same length as x
, giving the pdf or cdf values computed at x
.
Bistoon Hosseini, Mahmoud Afshari
Alizadeh, Morad, Mahmoud Afshari, Bistoon Hosseini, and Thiago G. Ramires. "Extended exp-G family of distributions: Properties, applications and simulation." Communications in Statistics-Simulation and Computation (2018): 1-16.
1 2 3 4 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.