Description Details Brief overview Author(s) References Examples
A set of functions for calculating...
landat
provides a set of functions designed to express...
landat
provides a set of functions for interpretation of ....
Example ...
Figure 1.
Danny C. Lee, Bjorn J. Brooks, Lars Y. Pomara
Maintainer: Bjorn J. Brooks <bjorn@geobabble.org>
The forthcoming publication will give a detailed thematic description of how these functions can be applied to satellite remote sensing data sets:
TITLE. in composition.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | ### Example 1, Calculate projection matrix for a polygon of ~450 MODIS pixels
library(landat)
data(transitions) # Load example data
b <- brkpts(transitions$phenofr, # 4 probabilistically
4) # equivalent breakpoints
m <- xt(transitions, fr.col=2, # Construct a two-way table
to.col=3, cnt.col=4,
brk=b)
# Each col & row of matrix, m, will contain proportionately same num vals
pxy <- jpmf(m) # Joint distribution
rmd <- rowSums(pxy) # Row marginal distribution
cmd <- colSums(pxy) # Column marginal distribution
r_c <- cpf(pxy,margin='p(row|col)') # Cond.probs (row | col) of matrix m
colSums(r_c) # Check that each column sums to 1
r_c.prj <- prjm(r_c,10^3) # Project joint pr matrix 1,000 steps
# Test that matrix has an equivalent number of non-zero marginal sums
if (length(rmd[rmd>0]) == length(cmd[cmd>0])) {
rmd.prj <- prjv(rmd,r_c.prj) # Project r by the prj mtrx to get stable eq vec
}
# Compare RMD & RMD-when-projected 1,000 steps by transition matrix
rmd
rmd.prj
### Example 1, Calculate projection matrix for a polygon of ~450 MODIS pixels
library(landat)
data(transitions) # Load example data
b <- brkpts(transitions$phenofr, # 4 probabilistically
4) # equivalent breakpoints
m <- xt(transitions, fr.col=2, # Construct a two-way table
to.col=3, cnt.col=4,
brk=b)
# Each col & row of matrix, m, will contain proportionately same num vals
pxy <- jpmf(m) # Joint distribution
rmd <- rowSums(pxy) # Row marginal distribution
cmd <- colSums(pxy) # Column marginal distribution
r_c <- cpf(pxy,margin='p(row|col)') # Cond.probs (row | col) of matrix m
r_c.prj <- prjm(r_c,10^3) # Project matrix 1,000 steps
# Test that matrix has an equivalent number of non-zero marginal sums
if (length(rmd[rmd>0]) == length(cmd[cmd>0])) {
seqv <- prjv(r_c.prj,cmd) # Iterate cmd by the prj mtrx to get stable eq vec
}
# Compare RMD & RMD-when-projected 1,000 steps by transition matrix
rmd
seqv
# % change in row marginal distribution when projected 1,000 steps
100*(seqv-rmd)/rmd
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.