shan: Calculate Shannon diversity of transitions.

Description Usage Arguments Details Value Author(s) References Examples

View source: R/shan.R

Description

Calculate the diversity of transitions using the Shannon index. Note that the formulas are conditional to omit zero probability values from the calculation.

Usage

1
shan(p)

Arguments

p

Either an array of marginal probabilities of a variable, X, or a matrix indicating the joint probabilities across all interactions of X and Y in the form:

p(x,y) X
0.06 0.06 0.06 ...
Y 0.14 0.14 0.14 ...
0.12 0.12 0.14 ...
... ... ... ...

Details

Multiply (element-wise) array (or matrix) p by logarithm base 2 p and sum.

∑ -p(x_i,y_j) * log2 p(x_i,y_j) = -p(1,1) * log2 p(1,1) + -p(1,2) * log2 p(1,2) + … + -p(i,j) * log2 p(i,j)

Value

Returns a value indicating the Shannon diversity of transitions.

Author(s)

Bjorn J. Brooks, Lars Y. Pomara, Danny C. Lee

References

PAPER TITLE.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
data(transitions)                # Load example data
b <- brkpts(transitions$phenofr, # Find 10 probabilistically
            10)                  #  equivalent breakpoints
m <- xt(transitions,             # Make transition matrix
        fr.col=2, to.col=3,
        cnt.col=4, brk=b)
pxy <- jpmf(m)                   # Joint distribution
hxy <- shan(pxy)                 # Shannon diversity of all transitions
rmd <- rowSums(pxy)              # Row marginal distribution
hy <- shan(rmd)                  # Shannon div of all "to" transitions
cmd <- colSums(pxy)              # Column marginal distribution
hx <- shan(cmd)                  # Shannon div of all "from" transitions

bjornbrooks/landat documentation built on May 17, 2019, 7:32 p.m.