#' Read in file with data
#'
#' Function takes in a csv from the \href{https://www.nhtsa.gov/research-data/fatality-analysis-reporting-system-fars}{Fatality Analysis Reporting System}
#' called a FARS file for a user-specified year.
#'
#' @param filename A \code{string} with filename to be read
#'
#' @return A dataframe created from csv file or will return an error if file does not exist
#'
#' @examples
#' \dontrun{
#' fars_read("accident_2015.csv")
#' }
#' @import dplyr
#' @import readr
#'
#' @export
fars_read <- function(filename) {
if(!file.exists(filename))
stop("file '", filename, "' does not exist")
data <- suppressMessages({
readr::read_csv(filename, progress = FALSE)
})
dplyr::tbl_df(data)
}
#' User-defined filename
#'
#' Functions creates a user-defined filename by appending the year to the filename
#'
#' @param year An \code{integer}
#'
#' @return Creates a filename \code{string} with year given by the user
#'
#' @examples
#' \dontrun{
#' make_filename(2015)
#' }
#'
#' @export
make_filename <- function(year) {
year <- as.integer(year)
sprintf("accident_%d.csv.bz2", year)
}
#' Tables of Yearly Accident Data
#'
#' The function will generate a list of dpylr dataframes where each table represents a year of the data.
#' Must be specified by the user.
#'
#' @param years \code{integers}
#'
#' @return Returns a \code{list} of \code{data.frame}s, each item in list corresponds to one of the years in the FARS data.
#'
#' @examples
# \dontrun{
#' # invalid input, year doesn't exist
#' fars_read_years(c(2013, 2014, 1900))
#' }
#'
#' @import dplyr
#'
fars_read_years <- function(years) {
lapply(years, function(year) {
file <- make_filename(year)
tryCatch({
dat <- fars_read(file)
dplyr::mutate(dat, year = year) %>%
dplyr::select(MONTH, year)
}, error = function(e) {
warning("invalid year: ", year)
return(NULL)
})
})
}
#' Table of Yearly by Monthly Accident Data
#'
#' Summarizes observations by months for the user-defined years in a table
#'
#' @param years \code{integers}
#'
#' @return Creates a \code{tibble} of where columns is years and where rows represents months of the data
#'
#' @examples
#' \dontrun{
#' fars_summarize_years(2013:2015)
#' }
#'
#' @import dplyr
#' @import tidyr
#'
#' @export
fars_summarize_years <- function(years) {
dat_list <- fars_read_years(years)
dplyr::bind_rows(dat_list) %>%
dplyr::group_by(year, MONTH) %>%
dplyr::summarize(n = n()) %>%
tidyr::spread(year, n)
}
#' Plots observations of data
#'
#' User provides a state and the function will create a plot of observations of accidents
#'
#' @param state.num \code{Integer} that represents the state
#' @param year integer
#' @inheritParams make_filename
#'
#' @return Returns a plot of the state with plot accidents. Returns error if state number is not valid.
#' Returns a message if no data is avaialable for that state.
#'
#' @examples
#' \dontrun{
#' fars_map_state(50,2013)
#' }
#'
#' @import dplyr
#' @import maps
#' @import graphics
#'
#'
#' @export
fars_map_state <- function(state.num, year) {
filename <- make_filename(year)
data <- fars_read(filename)
state.num <- as.integer(state.num)
if(!(state.num %in% unique(data$STATE)))
stop("invalid STATE number: ", state.num)
data.sub <- dplyr::filter(data, STATE == state.num)
if(nrow(data.sub) == 0L) {
message("no accidents to plot")
return(invisible(NULL))
}
is.na(data.sub$LONGITUD) <- data.sub$LONGITUD > 900
is.na(data.sub$LATITUDE) <- data.sub$LATITUDE > 90
with(data.sub, {
maps::map("state", ylim = range(LATITUDE, na.rm = TRUE),
xlim = range(LONGITUD, na.rm = TRUE))
graphics::points(LONGITUD, LATITUDE, pch = 46)
})
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.