#' ---
#' title: 'Build dataset for winter conditions in Mittadalen sameby, Sweden'
#' author: Bernardo Niebuhr
#' ---
library(magrittr)
library(dplyr)
library(ggplot2)
# read data
snow.hagg <- read.csv2("data/mittadalen/Snodjup_Haggberget.csv", skip = 10, header = TRUE, stringsAsFactors = F) %>%
dplyr::rename(date = 1, snow.haggberget = 3) %>%
dplyr::mutate(date = lubridate::ymd(date, tz = "UTC"),
snow.haggberget = 100*as.numeric(snow.haggberget)) %>%
dplyr::as_tibble()
snow.mysk <- read.csv2("data/mittadalen/Snodjup_Myskelasen.csv", skip = 10, header = TRUE, stringsAsFactors = F) %>%
dplyr::rename(date = 1, snow.myskelasen = 3) %>%
dplyr::mutate(date = lubridate::ymd(date, tz = "UTC"),
snow.myskelasen = 100*as.numeric(snow.myskelasen)) %>%
dplyr::as_tibble()
snow.hede <- read.csv("data/mittadalen/Snodjup_Hedeviken.csv", header = TRUE) %>%
dplyr::rename(date = 1, snow.hedeviken = 3) %>%
dplyr::mutate(date = lubridate::ymd(date, tz = "UTC"),
snow.hedeviken = snow.hedeviken*100) %>%
dplyr::as_tibble()
temp.min_max.drav <- read.csv2("data/mittadalen/Temperatur_max_min_dygn_Dravagen.csv", skip = 9, header = TRUE,
stringsAsFactors = F) %>%
dplyr::rename(date = 3, temp_min = 4, temp_max = 6) %>%
dplyr::mutate(date = lubridate::ymd(date, tz = "UTC"),
temp_min = as.numeric(temp_min),
temp_max = as.numeric(temp_max)) %>%
dplyr::as_tibble()
temp.mean.drav <- read.csv("data/mittadalen/Temperatur_dygn_Dravagen.csv", header = TRUE,
stringsAsFactors = F) %>%
dplyr::rename(date = 3, temp_avg = 4) %>%
dplyr::mutate(date = lubridate::ymd(date, tz = "UTC")) %>%
dplyr::as_tibble()
precip.drav <- read.csv2("data/mittadalen/Rainfall_dygn_Dravagen.csv", skip = 9, header = TRUE,
stringsAsFactors = F) %>%
dplyr::rename(date = 3, prec.dravagen = 4) %>%
dplyr::mutate(prec.dravagen = as.numeric(prec.dravagen),
date = lubridate::ymd(date, tz = "UTC")) %>%
dplyr::as_tibble()
precip.hede <- read.csv2("data/mittadalen/Rainfall_dygn_Hedeviken.csv", skip = 9, header = TRUE,
stringsAsFactors = F) %>%
dplyr::rename(date = 3, prec.hedeviken = 4) %>%
dplyr::mutate(prec.hedeviken = as.numeric(prec.hedeviken),
date = lubridate::ymd(date, tz = "UTC")) %>%
dplyr::as_tibble()
# join prec, snow and temp
weather.mitt <- precip.drav %>%
dplyr::left_join(precip.hede, by = c("date")) %>%
dplyr::left_join(snow.hagg, by = c("date")) %>%
dplyr::left_join(snow.hede, by = c("date")) %>%
dplyr::left_join(snow.mysk, by = c("date")) %>%
dplyr::left_join(temp.min_max.drav, by = c("date")) %>%
dplyr::left_join(temp.mean.drav, by = c("date")) %>%
dplyr::select(date, snow.haggberget, snow.hedeviken, snow.myskelasen,
prec.dravagen, prec.hedeviken, temp_min, temp_max, temp_avg) #%>%
# dplyr::mutate(snow2 = if_else(is.na(snowh), snow, snowh))
# filter years and seasons of interest
weather.mitt <- weather.mitt %>%
dplyr::mutate(year = lubridate::year(date + lubridate::days(5*30)),
month = lubridate::month(date)) %>%
dplyr::filter(month <= 4 | month >= 10, year >= 2008) %>%
dplyr::relocate(year, .after = date) %>%
dplyr::select(-month)
# check completness of datasets for each variable
# snow Haggberget - from 2012
ggplot(weather.mitt, aes(date)) +
facet_wrap(.~year, scales = "free", ncol = 5)+
geom_line(aes(y = snow.haggberget)) +
labs(x = "Date", "Snow depth (mm)")
# snow Hedeviken - from 2009
ggplot(weather.mitt, aes(date)) +
facet_wrap(.~year, scales = "free", ncol = 5)+
geom_line(aes(y = snow.hedeviken)) +
labs(x = "Date", "Snow depth (mm)")
# snow Myskelasen - complete
ggplot(weather.mitt, aes(date)) +
facet_wrap(.~year, scales = "free", ncol = 5)+
geom_line(aes(y = snow.myskelasen)) +
labs(x = "Date", "Snow depth (mm)")
# precipitation Hedeviken - from 2008
ggplot(weather.mitt, aes(date)) +
facet_wrap(.~year, scales = "free", ncol = 5)+
geom_line(aes(y = prec.hedeviken)) +
labs(x = "Date", "Snow depth (mm)")
# precipitation Dravagen - complete
ggplot(weather.mitt, aes(date)) +
facet_wrap(.~year, scales = "free", ncol = 5)+
geom_line(aes(y = prec.dravagen)) +
labs(x = "Date", "Snow depth (mm)")
# temp_min, temp_max Dravagen - there is a gap in 2008
ggplot(weather.mitt, aes(date)) +
facet_wrap(.~year, scales = "free", ncol = 5)+
geom_line(aes(y = temp_max)) +
geom_line(aes(y = temp_min), col = "red") +
labs(x = "Date", "Snow depth (mm)")
# temp_avg, Dravagen - there is a gap in 2008
ggplot(weather.mitt, aes(date)) +
facet_wrap(.~year, scales = "free", ncol = 5)+
geom_line(aes(y = temp_avg)) +
labs(x = "Date", "Snow depth (mm)")
# save
weather_mittadalen_allstations <- weather.mitt
saveRDS(weather_mittadalen_allstations, "data/weather_mittadalen_allstations.rds")
save(weather_mittadalen_allstations, file = "data/weather_mittadalen_allstations.RData")
# subset of stations
weather_mittadalen <- weather.mitt %>%
dplyr::select(-contains("hedeviken"), -contains("hagg")) %>%
dplyr::rename(snow_depth = 3, prec = 4)
# save
saveRDS(weather_mittadalen, "data/weather_mittadalen.rds")
save(weather_mittadalen, file = "data/weather_mittadalen.RData")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.