Description Usage Arguments Value Examples
Load a Transformer model stored on disk
1 2 3 4 5 | transformer(
model_name,
architecture = "BERT",
path = system.file(package = "golgotha", "models")
)
|
model_name |
character string of the chosen model within the architecture family. E.g. 'bert-base-uncased', 'bert-base-multilingual-uncased', 'bert-base-multilingual-cased', 'bert-base-dutch-cased' for 'BERT' architecture family. Defaults to 'bert-base-multilingual-uncased'. |
architecture |
character string of the model architecture family name. Currently supported architecture are 'BERT', 'GPT', 'GPT-2', 'CTRL', 'Transformer-XL', 'XLNet', 'XLM', 'DistilBERT', 'RoBERTa' and 'XLM-RoBERTa'. Defaults to 'BERT' |
path |
path to a directory on disk where the model is stored |
an object of class Transformer
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | transformer_download_model("bert-base-multilingual-uncased")
model <- transformer("bert-base-multilingual-uncased")
x <- data.frame(doc_id = c("doc_1", "doc_2"),
text = c("provide some words to embed", "another sentence of text"),
stringsAsFactors = FALSE)
predict(model, x, type = "tokenise")
embedding <- predict(model, x, type = "embed-sentence")
dim(embedding)
embedding <- predict(model, x, type = "embed-token")
str(embedding)
model_dir <- file.path(getwd(), "inst", "models")
transformer_download_model(architecture = "DistilBERT",
model_name = "distilbert-base-multilingual-cased",
path = model_dir)
path <- file.path(getwd(), "inst", "models", "distilbert-base-multilingual-cased")
model <- transformer(model_name = "distilbert-base-multilingual-cased",
architecture = "DistilBERT", path = path)
predict(model, x, type = "tokenise")
embedding <- predict(model, x, type = "embed-sentence")
dim(embedding)
embedding <- predict(model, x, type = "embed-token")
str(embedding)
unlink(file.path(system.file(package = "golgotha", "models"),
"bert-base-multilingual-uncased"), recursive = TRUE)
unlink(file.path(system.file(package = "golgotha", "models"),
"bert-base-multilingual-cased"), recursive = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.