msprime: Run a slendr model in msprime

View source: R/msprime.R

msprimeR Documentation

Run a slendr model in msprime

Description

This function will execute a built-in msprime script and run a compiled slendr demographic model.

Usage

msprime(
  model,
  sequence_length,
  recombination_rate,
  samples = NULL,
  random_seed = NULL,
  verbose = FALSE,
  debug = FALSE,
  run = TRUE,
  path = NULL
)

Arguments

model

Model object created by the compile function

sequence_length

Total length of the simulated sequence (in base-pairs)

recombination_rate

Recombination rate of the simulated sequence (in recombinations per basepair per generation)

samples

A data frame of times at which a given number of individuals should be remembered in the tree-sequence (see schedule_sampling for a function that can generate the sampling schedule in the correct format). If missing, only individuals present at the end of the simulation will be recorded in the final tree-sequence file.

random_seed

Random seed (if NULL, a seed will be generated between 0 and the maximum integer number available)

verbose

Write the log information from the SLiM run to the console (default FALSE)?

debug

Write msprime's debug log to the console (default FALSE)?

run

Should the msprime engine be run? If FALSE, the command line msprime command will be printed (and returned invisibly as a character vector) but not executed.

path

Path to the directory where simulation result files will be saved. If NULL, this directory will be automatically created as a temporary directory. If TRUE, this path will be also returned by the function. If a string is given, it is assumed to be a path to a directory where simulation results will be saved. In this case, the function will return this path invisibly. Note that if a tree-sequence file should be simulated (along with other files, potentially), that tree-sequence file (named 'msprime.trees' by default) will have to be explicitly loaded using ts_read().

Value

A tree-sequence object loaded via Python-R reticulate interface function ts_read (internally represented by the Python object tskit.trees.TreeSequence). If the path argument was set, it will return the path as a single-element character vector.

Examples


init_env()

# load an example model
model <- read_model(path = system.file("extdata/models/introgression", package = "slendr"))

# afr and eur objects would normally be created before slendr model compilation,
# but here we take them out of the model object already compiled for this
# example (in a standard slendr simulation pipeline, this wouldn't be necessary)
afr <- model$populations[["AFR"]]
eur <- model$populations[["EUR"]]
chimp <- model$populations[["CH"]]

# schedule the sampling of a couple of ancient and present-day individuals
# given model at 20 ky, 10 ky, 5ky ago and at present-day (time 0)
modern_samples <- schedule_sampling(model, times = 0, list(afr, 10), list(eur, 100), list(chimp, 1))
ancient_samples <- schedule_sampling(model, times = c(40000, 30000, 20000, 10000), list(eur, 1))

# sampling schedules are just data frames and can be merged easily
samples <- rbind(modern_samples, ancient_samples)

# run a simulation using the msprime back end from a compiled slendr model object
ts <- msprime(model, sequence_length = 1e5, recombination_rate = 0, samples = samples)

# simulated tree-sequence object can be saved to a file using ts_write()...
ts_file <- normalizePath(tempfile(fileext = ".trees"), winslash = "/", mustWork = FALSE)
ts_write(ts, ts_file)
# ... and, at a later point, loaded by ts_read()
ts <- ts_read(ts_file, model)

summary(ts)

bodkan/slendr documentation built on Dec. 19, 2024, 11:41 p.m.