Description Usage Arguments References Examples
This function is a part of DP approach. This function computes cost matrix for each interval.
1 | ComputeCost(x, y, n, p)
|
x |
input data x |
y |
input data y |
n |
total number of samples |
p |
dimension of data |
Bingwen Zhang, Jun Geng and Lifeng Lai, Detecting changes in regression models via sparse group lasso, http://users.wpi.edu/~bzhang/icassp_v1.pdf
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x, y, n, p)
{
c <- matrix(0, n, n)
for (i in 1:n) {
A <- matrix(0, p, p)
B <- matrix(0, p, 1)
for (j in i:n) {
A <- A + x[j, ] %*% t(x[j, ])
B <- B + y[j] * x[j, ]
alpha <- ginv(A) %*% B
tmp <- 0
for (t in i:j) {
tmp <- tmp + (y[t] - (t(x[t, ]) %*% alpha)[1])^2
}
c[i, j] <- tmp
}
}
return(c)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.