Description Usage Arguments Author(s) Examples
Gaussian Dirichlet Process Mixture CLustering For Tall Data
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
data |
n by p matrix wuith n observations in rows and p dimensions in columns. |
coresets |
a list with 3 components |
burnin |
an integer giving the number of MCMC iterations to burn. Ddefaults is half) |
diagVar |
logical flag indicating whether the covariance matrix of each cluster is
constrained as diagonal, or unconstrained full matrix.
Default is |
plotevery_nit |
an integer indicating the interval between plotted iterations
when |
doPlot |
logical flag indicating whether to plot MCMC iteration or not.
Default is |
verbose |
logical flag indicating whether partition info is messaged over
at each MCMC iteration. Default is |
Boris Hejblum, Paul Kirk
1 2 3 4 5 6 7 8 9 10 | n1 <- 50000
n2 <- 500
mydata <- rbind(cbind(rnorm(n1), rnorm(n = n1)),
cbind(rnorm(n2, m=10), rnorm(n = n2, m=10)))
#plot(mydata)
#coresets <- stats::kmeans(mydata, centers = 100)[c("cluster", "centers", "size")]
res <- bigdpclust(mydata, nclumps=200)
table(res$cluster[1:n1])
table(res$cluster[n1 + 1:n2])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.