API for brandon-mosqueda/SKM
Sparse Kernels Methods

Global functions
BayesianOptimization Man page Source code
KFold Man page Source code
Maize Man page
Matrix_runif Man page Source code
Min_Max_Inverse_Scale_Vec Man page Source code
Min_Max_Scale_Mat Man page Source code
Utility Man page Source code
Utility_Max Man page Source code
Wheat Man page
accuracy Man page Source code
arc_cosine_kernel Source code
arc_cosine_layers Source code
as_tf_rates Source code
assert_base_params Source code
assert_bayesian_model Source code
assert_bayesian_x Source code
assert_bayesian_xy Source code
assert_best_lines_match Source code
assert_bounds Source code
assert_categorical_obs_pred Source code
assert_confusion_matrix Source code
assert_covariance_structure Source code
assert_cv_kfold Source code
assert_cv_kfold_strata Source code
assert_cv_leve_one_group_out Source code
assert_cv_na Source code
assert_cv_one_env_out Source code
assert_cv_random Source code
assert_cv_random_line Source code
assert_cv_random_strata Source code
assert_deep_learning_loss_function Source code
assert_envs Source code
assert_folds Source code
assert_forest_split_rule Source code
assert_geno Source code
assert_geno_markers Source code
assert_gs_summary Source code
assert_is_multivariate Source code
assert_layers Source code
assert_lines Source code
assert_mixed_x Source code
assert_observed_probabilities Source code
assert_optimizer Source code
assert_output_penalties Source code
assert_penalty Source code
assert_pheno Source code
assert_pls_method Source code
assert_positive_class Source code
assert_predict_format Source code
assert_predictors Source code
assert_random_forest_na_action Source code
assert_same_length Source code
assert_seed Source code
assert_sparse_kernel Source code
assert_subset_string Source code
assert_svm_class_weights Source code
assert_svm_kernel Source code
assert_svm_scale Source code
assert_testing_indices Source code
assert_tune_cv Source code
assert_verbose Source code
assert_x Source code
assert_xy Source code
assert_y Source code
bayesian_model Man page Source code
best_lines_match Man page Source code
brier_score Man page Source code
build_mixed_formula Source code
categorical_metrics Source code
categorical_summarise_line Source code
categorical_summary Man page Source code
char_at Source code
checkBounds Source code
checkSubsetString Source code
cholesky Man page Source code
cholesky_no_definite Man page Source code
close_all_devices Source code
coef.Model Man page Source code
compute_standard_errors Source code
confusion_matrix Man page Source code
conventional_kernel Source code
cv_kfold Man page Source code
cv_kfold_strata Man page Source code
cv_leve_one_group_out Man page Source code
cv_na Man page Source code
cv_one_env_out Man page Source code
cv_random Man page Source code
cv_random_line Man page Source code
cv_random_strata Man page Source code
deep_learning Man page Source code
deep_learning_eval_one_fold Source code
deep_learning_tune Source code
diagAK_f Source code
dummy_matrix Source code
echo Man page Source code
exponential_kernel Source code
f1_score Man page Source code
format_bayes_hyperparam Source code
format_glmnet_folds Source code
format_predictions Source code
format_predictors Source code
format_tensorflow_probabilities Source code
generalized_boosted_machine Man page Source code
generalized_linear_model Man page Source code
get_all_levels Source code
get_bglr_matrix_param_name Source code
get_bglr_response_type Source code
get_cols_names Source code
get_cross_validator Source code
get_default_layer_params Source code
get_gbm_distribution Source code
get_gbm_predict_type Source code
get_glmnet_family Source code
get_glmnet_loss Source code
get_keras_optimizer_function Source code
get_last_layer_activation Source code
get_last_layer_neurons_number Source code
get_length Source code
get_levels Source code
get_loss Source code
get_loss_function Source code
get_metric Source code
get_partial_least_squares_formula Source code
get_rand_state Source code
get_random_forest_formula Source code
get_records Source code
get_response Source code
get_response_type Source code
get_tabs Source code
get_tuner Source code
get_verbose_function Source code
gs_bayesian Man page Source code
gs_fast_bayesian Man page Source code
gs_radial Source code
gs_summaries Man page Source code
gs_summaries_single Source code
has Source code
has_dims Source code
has_str Source code
has_to_tune Source code
hush Man page Source code
is_arc_cosine_kernel Source code
is_bayesian_tuner Source code
is_binary_loss Source code
is_binary_response Source code
is_categorical_loss Source code
is_categorical_response Source code
is_class_response Source code
is_continuous_response Source code
is_conventional_kernel Source code
is_discrete Source code
is_discrete_response Source code
is_empty Man page Source code
is_empty_dir Source code
is_hyperparam Source code
is_int Source code
is_number Source code
is_numeric_loss Source code
is_numeric_response Source code
is_sparse_kernel Source code
is_square Source code
is_unix_os Source code
is_windows_os Source code
kappa_coeff Man page Source code
kernelize Man page Source code
l2norm Source code
linear_kernel Source code
lm_intercept Source code Source code
lm_slope Source code Source code
lmerUvcov Source code
lunique Source code
maape Man page Source code
mae Man page Source code
math_mode Man page Source code
matthews_coeff Man page Source code
mixed_model Man page Source code
mkdir Man page Source code
mse Man page Source code
multivariate_loss Source code
nas_indices Source code
ndcg Man page Source code
need_invert_loss Source code
nmaape Source code
nonull Man page Source code
not_implemented_function Source code
nrmse Man page Source code
numeric_metrics Source code
numeric_summarise_line Source code
numeric_summary Man page Source code
partial_least_squares Man page Source code
pccc Man page Source code
pcic Man page Source code
pearson Man page Source code
polynomial_kernel Source code
pr_auc Man page Source code
precision Man page Source code
predict.BayesianModel Man page Source code
predict.MixedModel Man page Source code
predict.Model Man page Source code
predict.PartialLeastSquaresModel Man page Source code
predict_class Source code
predict_numeric Source code
predict_univariate_glm Source code
prepare_bayesian_model Source code
prepare_coef0 Source code
prepare_covariance_type Source code
prepare_degree Source code
prepare_eta Source code
prepare_gamma Source code
prepare_multivariate_y Source code
prepare_multivariate_y_only_numeric Source code
prepare_partial_least_squares_method Source code
prepare_random_forest_na_action Source code
prepare_univariate_y Source code
prepare_y_to_deep_learning Source code
print.CategoricalSummary Source code
print.GSBayesian Source code
print.GSCrossEvaluator Source code
print.GSFastBayesian Source code
print.GSSummaries Source code
print.NumericSummary Source code
print_model_time_execution Source code
proportion_to Source code
py_hush Source code
r2 Man page Source code
radial_eval_one_fold Source code
radial_kernel Source code
radial_kernel_rho Source code
radial_tuner_initialize Source code
random_forest Man page Source code
ranefUvcov Source code
ranefUvcovNew Source code
read_csv Source code
recall Man page Source code
regex_contains Source code
regex_match Source code
relfac Source code
relfac.chol Source code
relfac.evd Source code
remove_if_has_more Source code
remove_no_variance_cols Source code
reorder_se_cols Source code
replace_at_list Source code
replace_by_regex Source code
rmdir Source code
rmse Man page Source code
roc_auc Man page Source code
round_df Source code
sample_prop Source code
sensitivity Man page Source code
set_collapse Source code
set_rand_state Source code
shead Source code
sigmoid_kernel Source code
sparse_kernel Source code
spearman Man page Source code
specificity Man page Source code
stail Source code
str_join Source code
support_vector_machine Man page Source code
symmetric_diff Source code
to_data_frame Man page Source code
to_matrix Man page Source code
train_glm Source code
train_radial_bayes Source code
train_random_forest Source code
validate_bayesian_model Source code
validate_deep_learning Source code
validate_generalized_boosted_machine Source code
validate_generalized_linear_model Source code
validate_gs_fast_bayesian Source code
validate_gs_radial Source code
validate_mixed_model Source code
validate_partial_least_squares Source code
validate_random_forest Source code
validate_support_vector_machine Source code
which_is_na Source code
wrapper_loss Source code
write_csv Man page Source code
brandon-mosqueda/SKM documentation built on Feb. 8, 2025, 5:24 p.m.