accuracy | Accuracy |
bayesian_model | Fit a Bayesian Generalized Linear Regression Model (BGLR) |
BayesianOptimization | Bayesian Optimization |
best_lines_match | Percentage of best lines present in the predictions |
brier_score | Brier Score |
categorical_summary | Categorical summary |
cholesky | Compute Cholesky |
cholesky_no_definite | Cholesky |
coef.Model | Model coefficients |
confusion_matrix | Confusion matrix |
cv_kfold | K-fold cross validation folds generation |
cv_kfold_strata | Stratified K-fold cross validation folds generation |
cv_leve_one_group_out | Leave one group out cross validation folds generation |
cv_na | NA cross validation folds generation |
cv_one_env_out | Leave one environment out cross validation folds generation |
cv_random | Random cross validation folds generation |
cv_random_line | Random line cross validation folds generation |
cv_random_strata | Stratified random cross validation folds generation |
deep_learning | Fit a Deep Learning Model |
echo | Print a message in the console. |
f1_score | F1 score |
generalized_boosted_machine | Fit a Generalized Boosted Machine (GBM) |
generalized_linear_model | Fit a Penalized Generalized Linear Model |
gs_bayesian | Bayesian Cross Validation for Genomic Selection |
gs_fast_bayesian | Fast Bayesian Cross Validation for Genomic Selection |
gs_summaries | Summaries for Genomic Selection |
hush | Hide code output |
is_empty | Is an empty object. |
kappa_coeff | Cohen's Kappa coefficient |
kernelize | Apply a kernel |
KFold | K-Folds cross validation index generator |
maape | Mean Arctangent Absolute Percentage Error |
mae | Mean Abosolute Error |
Maize | Genomic Maize data. |
math_mode | Mathematical Mode |
Matrix_runif | Matrix runif |
matthews_coeff | Matthews Correlation Coefficient (MCC) |
Min_Max_Inverse_Scale_Vec | MinMax Inverse Scaling |
Min_Max_Scale_Mat | Matrix MinMax Scaling |
mixed_model | Fit a Mixed Model (lme4GS) |
mkdir | Make directory |
mse | Mean Squared Error |
ndcg | Normalized Discounted Cumulative Gain (NDCG) |
nonull | nonull |
nrmse | Normalized Root Mean Squared Error |
numeric_summary | Numeric summary |
partial_least_squares | Fit a Partial Least Squares Regression Model (PLSR) |
pccc | Proportion of Correctly Classified Cases (PCCC) |
pcic | Proportion of Incorrectly Classified Cases |
pearson | Pearson's correlation coefficient |
pr_auc | Precision-Recall Area Under the Curver (PR-AUC) |
precision | Precision |
predict.BayesianModel | Predict Bayesian model |
predict.MixedModel | Predict Mixed model |
predict.Model | Predict model |
predict.PartialLeastSquaresModel | Predict Partial Least Squares model |
r2 | R-Squared |
random_forest | Fit a Random Forest Model |
recall | Recall |
rmse | Root Mean Squared Error |
roc_auc | ROC Area Under the Curver (ROC-AUC) |
sensitivity | Sensitivity |
spearman | Spearman's correlation coefficient |
specificity | Specificity |
support_vector_machine | Fit a Support Vector Machine (SVM) |
to_data_frame | Convert data to data.frame |
to_matrix | Convert data to matrix |
Utility | Utility Computing Function |
Utility_Max | Utility Maximization Function |
Wheat | Genomic Wheat data. |
write_csv | Write a CSV |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.