data(Maize)
folds <- cv_kfold(nrow(Maize$Pheno), k = 5)
results <- gs_fast_bayesian(
Maize$Pheno,
Maize$Geno,
traits = "Y",
folds = folds,
is_multitrait = FALSE,
iterations_number = 10,
burn_in = 5,
thinning = 5,
seed = NULL,
verbose = TRUE
)
print(results)
#> $Predictions
#> # A tibble: 2,888 × 6
#> Trait Fold Line Env Observed Predicted
#> <fct> <fct> <fct> <fct> <dbl> <dbl>
#> 1 Y 1 L001_L003 1 -0.0274 7.11
#> 2 Y 1 L001_L012 1 0.574 3.89
#> 3 Y 1 L001_L023 1 -0.0636 3.95
#> 4 Y 1 L001_L033 1 0.215 2.05
#> 5 Y 1 L001_L034 1 0.299 2.70
#> # … with 2,883 more rows
#> # ℹ Use `print(n = ...)` to see more rows
#>
#> $traits: Y
#>
#> $is_multitrait: FALSE
#>
#> $folds: 5
#>
#> $execution_time: 0.841673 mins
#>
#> $Pheno
#> envs_num: 4
#> lines_num: 722
#> rows_num: 2888
#>
#> $Geno
#> rows_num: 722
#> cols_num: 722
#>
#> $model_name: BGBLUP
#>
#> $iterations_number: 10
#>
#> $burn_in: 5
#>
#> $thinning: 5
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.