#' Measure single molecule events detected by Hidden Markov Model
#'
#' @param data
#' @param conversion
#'
#' @return a tibble with event duration and step size for each event
#' @export
#'
#' @examples
#'
#' measure_events(data = depmix_posterior,
#' conversion = raw_trace_length/running_calcs_length,
#' run_mean = running_mean_object_given_2_hmm)
measure_events <- function(data, conversion, run_mean_data){
#setup
#convert running mean object to tibble
run_mean_tibble <- tibble::enframe(run_mean_data)
#finds lengths of events in number of running windows
run_length_encoding <- rle(data$state)
#converting to a tibble
rle_object <- as_tibble(do.call("cbind", run_length_encoding))
#make a copy of data for event duration analysis
rle_object_4_duration <- rle_object %>% dplyr::filter(values == 2)
#calculates the events durations
on_times <- rle_object_4_duration %>%
dplyr::mutate(n_event = 1:nrow(rle_object_4_duration),
length_5kHz = lengths*conversion,
event_duration_ms = (length_5kHz/5000)*1000) %>%
dplyr::select(n_event,values, everything()) %>%
dplyr::rename("num_windows" = lengths,
"hmm_state" = values)
#calculate event displacement
#If the rle_object's last row is in state 1, get rid of that last row. This needs to end in state 2 to capture the end of the last event
rle_object_4_step_sizes <- if(tail(rle_object, 1)$values == 1) slice(rle_object, -length(rle_object$values))
#Calculate the cumulative sum of the run length encoder
#And splits the tibble into two seperate tables to isolate state 1 info from state 2
split_data <- rle_object_4_step_sizes %>%
dplyr::mutate(cumsum = cumsum(lengths)) %>%
dplyr::group_by(values) %>%
split(rle_object_4_step_sizes$values)
#data is recmombined in a state_1 column and a state_2
#the values in these columsn represent the last data point in either state 1 or state 2
#So the range of values between the end of state 1 (or start of state 2) and the end of state 2 is the event duration
regroup_data <- bind_cols(state_1_end = split_data[[1]]$cumsum, state_2_end = split_data[[2]]$cumsum)
#loop over regrouped data to find the mean of the events displacements
step_sizes <- vector("list", length = nrow(regroup_data)) #allocate space for output storage of loop
for(i in seq_along(1:nrow(regroup_data))){
step_sizes[[i]] <- mean(run_mean_tibble$value[(regroup_data$state_1_end[i]+1) : (regroup_data$state_2_end[i])])
}
#add step sizes to the on_times table
measured_events <- on_times %>% mutate(step_size_nm = unlist(step_sizes))
return(measured_events)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.