require(readr)
require(dplyr)
require(ggplot2)
gwps_guide_res = '/gpfs/commons/groups/knowles_lab/gwps/saved_rdata/gwps_guide_data.Rdata'
gwps_gene_data = '/gpfs/commons/groups/knowles_lab/gwps/saved_rdata/gene_data.Rdata'
gwps_graph_data = '/gpfs/commons/groups/knowles_lab/gwps/saved_rdata/gwps_graph_data.Rdata'

cish2_fn <- '/gpfs/commons/groups/knowles_lab/gwps/data/INTERVAL_h2_cis.tsv'
gwh2_fn <- '/gpfs/commons/groups/knowles_lab/gwps/data/INTERVAL_h2_trans.tsv'
load(gwps_guide_res)
load(gwps_gene_data)
load(gwps_graph_data)
cish2 <- readr::read_tsv(cish2_fn)
gwh2 <- readr::read_tsv(gwh2_fn)
# debugging, for Alex
missing_cis <- gene_data %>% dplyr::filter(!(gene %in% cish2$Gene)) %>% select(gene, gene_name, cv, mean, std)
missing_trans <- gene_data %>% dplyr::filter(!(gene %in% gwh2$Gene)) %>% select(gene, gene_name, cv, mean, std)

readr::write_csv(missing_cis, file = '/gpfs/commons/groups/knowles_lab/atokolyi/missing_genes_cis.csv')
readr::write_csv(missing_trans, file = '/gpfs/commons/groups/knowles_lab/atokolyi/missing_genes_trans.csv')
in_all <- intersect(gene_data$gene, intersect(cish2$Gene, gwh2$Gene))
cish2 <- cish2 %>% dplyr::filter(Gene %in% in_all)
gwh2 <- gwh2 %>% dplyr::filter(Gene %in% in_all)

cis_trans <- cish2 %>% dplyr::select(Gene, VG_Vp) %>% dplyr::rename(cis_h2 = VG_Vp)
cis_trans$gw_h2 <- gwh2$VG_Vp
# "trans_h2" here is assuming no covariance between cis and gw estimates. Slightly inaccurate.
cis_trans <- cis_trans %>% dplyr::mutate(trans_h2 = gw_h2 - cis_h2, cis_gw_ratio = cis_h2/gw_h2)
cis_trans %>% ggplot(aes(x=cis_h2)) + geom_density()
cis_trans %>% ggplot(aes(x=trans_h2)) + geom_density()
cis_trans %>% ggplot(aes(x=gw_h2)) + geom_density()
cis_trans %>% ggplot(aes(x=cis_gw_ratio)) + geom_density() + xlim(-0.1, 1)
readr::write_csv(cis_trans, file="/gpfs/commons/groups/knowles_lab/gwps/saved_rdata/cis_trans.csv")


brielin/inspre documentation built on April 12, 2025, 11:52 p.m.