Description Usage Arguments Value
View source: R/corrExplorationPlots.R
Plot the correlations focusing on a variable x vs all the rest of the variables. The workflow is: 1. remove small groups if "min.group.size" is defined; 2. calculate the p values for all pairs of variables 3. select the ones that pass pvalue threshold for plotting. Pvalues are by default non-parametric. Can choose if p.adjust should be used. 4. calculate padj and save the plots and pvalue tables.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | plot_corr_one(
plotdf,
x.coln,
y.coln,
cat.num.test = "kruskal.test",
num.num.test = "spearman",
plot.it = F,
plot.nrow = NULL,
plot.ncol = NULL,
signif.cutoff = 0.05,
plot.stattest = "np",
p.adj.method = NULL,
plot.signif.only = F,
plot.max = 40,
min.group.size.x = 3,
min.group.size.y = 3,
seed = 999,
outpdir = NULL,
plot.w = 7,
plot.h = 7.5,
fn.suffix = "",
...
)
plot_corr(
plotdf,
x.coln,
y.coln = NULL,
cat.num.test = "kruskal.test",
cat.cat.test = "both",
num.num.test = "spearman",
plot.it = F,
plot.nrow = NULL,
plot.ncol = NULL,
signif.cutoff = 0.05,
plot.stattest = "np",
plot.signif.only = F,
p.adj.method.each = NULL,
p.adj.method.all = "bonferroni",
plot.max = 50,
seed = 999,
outpdir = NULL,
plot.w = 7,
plot.h = 7.5,
min.group.size.x = 3,
min.group.size.y = 3,
fn.suffix = "",
...
)
|
plotdf |
dataframe with rows of samples and columns of features. |
x.coln |
column name of the x axis of the plot |
y.coln |
character vector of the column names of features to be plotted as y axis |
cat.num.test |
the significance test to be used for categorical vs numerical variables. Use the name of the r basic tests (Default "kruskal.test"). |
num.num.test |
the significance test to be used for numerical vs numerical variables. Should be "spearman"(Default), "pearson", "kendall", or "lm"(using the pvalue of the independent variable in lm). |
plot.it |
Whether to plot it out (T/F) |
plot.nrow, plot.ncol |
The number of rows and columns in the combined plot |
plot.stattest |
Pass to the "type" parameter in |
plot.signif.only |
whether to plot only the significant items |
plot.max |
maximum how many plots to be plotted. If set to NULL then plot all. |
min.group.size.x |
for categorical x, remove groups that are smaller than this number |
min.group.size.y |
for categorical y, remove groups that are smaller than this number |
outpdir |
If not NULL, save all plots and pvalues (as table) to the outpdir |
plot.w, plot.h |
Width and height of each individual plot |
fn.suffix |
filename suffix |
... |
pass to |
cat.cat.test |
the significance test to be used for categorical vs categorical variables. Should be "fisher","chi" or "both"(Default) |
padj.method, padj.method.each, padj.method.all |
pvalue adjustment method. Should follow |
For plot_corr, List of returns from plot_corr_one. For plot_corr_one: List of two: "plot" of ggarrange object which arrange all plot into one, and "pvalues" of a named vector.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.