library(tidyverse)
library(lubridate)
library(devtools)
library(readODS)
library(httr)
load_all()
query_url <-
query_urls |>
filter(data_set == "nrm_2023_q4") |>
pull(query_url)
GET(
query_url,
write_disk(tf <- tempfile(fileext = ".ods"))
)
# ---- Table 11: NRM referrals by government agency first responder, exploitation type, age at exploitation, gender and nationality ----
nrm_referrals_govt_2023_q4_raw <-
read_ods(tf, sheet = "Table_11", skip = 5)
nrm_referrals_govt_2023_q4 <-
nrm_referrals_govt_2023_q4_raw |>
as_tibble() |>
# Replace dots in column names with a space
rename_with(~str_replace_all(.x, "[\\.]+", " ")) |>
# The first row of each new type of first responder is a total - make that clear in the data
mutate(
`Exploitation type` = if_else(!is.na(`Government agency first responder`), "Total", `Exploitation type`),
`Age at exploitation` = if_else(!is.na(`Government agency first responder`), "Total", `Age at exploitation`),
`Gender` = if_else(!is.na(`Government agency first responder`), "Total", `Gender`)
) |>
#... same for exploitation type
mutate(
`Age at exploitation` = if_else(!is.na(`Exploitation type`), "Total", `Age at exploitation`),
`Gender` = if_else(!is.na(`Exploitation type`), "Total", `Gender`)
) |>
#... and same for age
mutate(
`Gender` = if_else(!is.na(`Age at exploitation`), "Total", `Gender`)
) |>
# Fill in all the other blanks
fill(`Government agency first responder`, `Exploitation type`, `Age at exploitation`, Gender) |>
# Rename total row
mutate(`Government agency first responder` = if_else(`Government agency first responder` == "Total", "Government agency total", `Government agency first responder`)) |>
# filter(`Government agency first responder` != "Total") |>
rename(`First responder` = `Government agency first responder`) |>
mutate(`First responder type` = "Government agency") |>
relocate(`First responder type`)
# Make nationality a single column
nrm_referrals_govt_2023_q4 <-
nrm_referrals_govt_2023_q4 |>
pivot_longer(cols = -c(`First responder type`:Gender), names_to = "Nationality", values_to = "People")
# ---- Table 12: NRM referrals by NGO and third sector organisation first responder, exploitation type, age at exploitation, gender and nationality ----
nrm_referrals_ngo_2023_q4_raw <-
read_ods(tf, sheet = "Table_12", skip = 5)
nrm_referrals_ngo_2023_q4 <-
nrm_referrals_ngo_2023_q4_raw |>
as_tibble() |>
# Replace dots in column names with a space
rename_with(~str_replace_all(.x, "[\\.]+", " ")) |>
# The first row of each new type of first responder is a total - make that clear in the data
mutate(
`Exploitation type` = if_else(!is.na(`NGO and third sector first responder`), "Total", `Exploitation type`),
`Age at exploitation` = if_else(!is.na(`NGO and third sector first responder`), "Total", `Age at exploitation`),
`Gender` = if_else(!is.na(`NGO and third sector first responder`), "Total", `Gender`)
) |>
#... same for exploitation type
mutate(
`Age at exploitation` = if_else(!is.na(`Exploitation type`), "Total", `Age at exploitation`),
`Gender` = if_else(!is.na(`Exploitation type`), "Total", `Gender`)
) |>
#... and same for age
mutate(
`Gender` = if_else(!is.na(`Age at exploitation`), "Total", `Gender`)
) |>
# Fill in all the other blanks
fill(`NGO and third sector first responder`, `Exploitation type`, `Age at exploitation`, Gender) |>
# Rename total row
mutate(`NGO and third sector first responder` = if_else(`NGO and third sector first responder` == "Total", "NGO and third sector total", `NGO and third sector first responder`)) |>
# filter(`NGO and third sector first responder` != "Total") |>
rename(`First responder` = `NGO and third sector first responder`) |>
mutate(`First responder type` = "NGO and third sector") |>
relocate(`First responder type`)
# Make nationality a single column
nrm_referrals_ngo_2023_q4 <-
nrm_referrals_ngo_2023_q4 |>
pivot_longer(cols = -c(`First responder type`:Gender), names_to = "Nationality", values_to = "People")
# ---- Table 13: NRM referrals by police first responder, exploitation type, age at exploitation, gender and nationality ----
nrm_referrals_police_2023_q4_raw <-
read_ods(tf, sheet = "Table_13", skip = 5)
nrm_referrals_police_2023_q4 <-
nrm_referrals_police_2023_q4_raw |>
as_tibble() |>
# Replace dots in column names with a space
rename_with(~str_replace_all(.x, "[\\.]+", " ")) |>
# The first row of each new type of first responder is a total - make that clear in the data
mutate(
`Exploitation type` = if_else(!is.na(`Police first responder`), "Total", `Exploitation type`),
`Age at exploitation` = if_else(!is.na(`Police first responder`), "Total", `Age at exploitation`),
`Gender` = if_else(!is.na(`Police first responder`), "Total", `Gender`)
) |>
#... same for exploitation type
mutate(
`Age at exploitation` = if_else(!is.na(`Exploitation type`), "Total", `Age at exploitation`),
`Gender` = if_else(!is.na(`Exploitation type`), "Total", `Gender`)
) |>
#... and same for age
mutate(
`Gender` = if_else(!is.na(`Age at exploitation`), "Total", `Gender`)
) |>
# Fill in all the other blanks
fill(`Police first responder`, `Exploitation type`, `Age at exploitation`, Gender) |>
# Rename total row
mutate(`Police first responder` = if_else(`Police first responder` == "Total", "Police total", `Police first responder`)) |>
# filter(`Police first responder` != "Total") |>
rename(`First responder` = `Police first responder`) |>
mutate(`First responder type` = "Police") |>
relocate(`First responder type`)
# Make nationality a single column
nrm_referrals_police_2023_q4 <-
nrm_referrals_police_2023_q4 |>
pivot_longer(cols = -c(`First responder type`:Gender), names_to = "Nationality", values_to = "People")
# ---- Table 14: NRM referrals from local authority first responder by exploitation type, age at exploitation, gender and nationality ----
nrm_referrals_la_2023_q4_raw <-
read_ods(tf, sheet = "Table_14", skip = 5)
nrm_referrals_la_2023_q4 <-
nrm_referrals_la_2023_q4_raw |>
as_tibble() |>
# Replace dots in column names with a space
rename_with(~str_replace_all(.x, "[\\.]+", " ")) |>
# The first row of each new type of exploitation type is a total - make that clear in the data
mutate(
`Age at exploitation` = if_else(!is.na(`Exploitation type`), "Total", `Age at exploitation`),
`Gender` = if_else(!is.na(`Exploitation type`), "Total", `Gender`)
) |>
#... and same for age
mutate(
`Gender` = if_else(!is.na(`Age at exploitation`), "Total", `Gender`)
) |>
# Fill in all the other blanks
fill(`Exploitation type`, `Age at exploitation`, Gender) |>
mutate(
`First responder type` = "Local Authority",
`First responder` = "Local Authority"
) |>
relocate(`First responder type`, `First responder`) |>
# Rename total row
mutate(`First responder` = if_else(`Exploitation type` == "Total", "Local Authority total", `First responder`))
# Make nationality a single column
nrm_referrals_la_2023_q4 <-
nrm_referrals_la_2023_q4 |>
pivot_longer(cols = -c(`First responder type`:Gender), names_to = "Nationality", values_to = "People")
# ---- Combine NRM referrals into a single dataframe ----
nrm_referrals_2023_q4 <-
bind_rows(
nrm_referrals_govt_2023_q4,
nrm_referrals_ngo_2023_q4,
nrm_referrals_police_2023_q4 |> filter(str_detect(`First responder`, "total")), # Just take totals for Police
nrm_referrals_la_2023_q4
)
# ---- Table 41: DtN reports by nationality ----
nrm_duty_to_notify_2023_q4 <-
read_ods(tf, sheet = "Table_41", skip = 5) |>
as_tibble()
# ---- Save output to data/ folder ----
usethis::use_data(nrm_referrals_2023_q4, overwrite = TRUE)
readr::write_csv(nrm_referrals_2023_q4, "data-raw/nrm_referrals_2023_q4.csv")
usethis::use_data(nrm_referrals_govt_2023_q4, overwrite = TRUE)
readr::write_csv(nrm_referrals_govt_2023_q4, "data-raw/nrm_referrals_government_2023_q4.csv")
usethis::use_data(nrm_referrals_ngo_2023_q4, overwrite = TRUE)
readr::write_csv(nrm_referrals_ngo_2023_q4, "data-raw/nrm_referrals_ngo_2023_q4.csv")
usethis::use_data(nrm_referrals_police_2023_q4, overwrite = TRUE)
readr::write_csv(nrm_referrals_police_2023_q4, "data-raw/nrm_referrals_police_2023_q4.csv")
usethis::use_data(nrm_referrals_la_2023_q4, overwrite = TRUE)
readr::write_csv(nrm_referrals_la_2023_q4, "data-raw/nrm_referrals_local-authority_2023_q4.csv")
usethis::use_data(nrm_duty_to_notify_2023_q4, overwrite = TRUE)
readr::write_csv(nrm_duty_to_notify_2023_q4, "data-raw/nrm_duty_to_notify_2023_q4.csv")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.