#' Calculate the univariate outlier "score"
#'
#' `step_outliers_univariate` creates a *specification* of a recipe
#' step that will calculate the outlier score using the user supplied outlier_function on a univariate basis
#' the combination is of multiple variables is handled by the combination_function
#'
#' @keywords datagen
#' @concept preprocessing
#' @importFrom tidyr pivot_longer
#' @inheritParams recipes::step_center
#' @param ... One or more selector functions to choose which
#' variables will be transformed. See [selections()] for
#' more details. For the `tidy` method, these are not
#' currently used.
#' @param role not defined for this function
#' @param outlier_score a placeholder for the exit of this function don't change
#' @param columns A character string of variable names that will
#' be populated (eventually) by the terms argument.
#' @param name_mutate the name of the generated column with univariate scores
#' @param outlier_function the function used on a column basis to calculate the outlier score.
#' @param combination_function the function used on a row basis to combine different outlier function results.
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any), with the name on `name_mutate` and the scores calculated. For the
#' `tidy` method, a tibble with columns `index` (the row indexes of the tibble) and `outlier_score` (the scores).
#'
#' @export
#'
#' @details
#' All columns in the data are sampled and returned by [juice()]
#' and [bake()].
#'
#' All columns used in this step must be numeric with no missing data.
#'
#' When used in modeling, users should strongly consider using the
#' option `skip = TRUE` so that this operation is _not_
#' conducted outside of the training set.
#' @examples
#' library(recipes)
#' library(tidy.outliers)
#' rec <-
#' recipe(mpg ~ ., data = mtcars) %>%
#' step_outliers_univariate(all_numeric_predictors()) %>%
#' prep(mtcars)
#'
#' bake(rec, new_data = NULL)
#'
#' tidy(rec, number = 1)
step_outliers_univariate <- function(recipe,
...,
role = NA,
trained = FALSE,
outlier_score = NULL,
columns = NULL,
name_mutate = ".outliers_univariate",
outlier_function = \(x){
(percent_rank(x) - 0.5) |>
abs() * 2
},
combination_function = mean,
skip = TRUE,
id = rand_id("outliers_univariate")) {
## The variable selectors are not immediately evaluated by using
## the `quos()` function in `rlang`. `ellipse_check()` captures
## the values and also checks to make sure that they are not empty.
terms <- ellipse_check(...)
add_step(
recipe,
step_outliers_univariate_new(
terms = terms,
trained = trained,
role = role,
outlier_score = outlier_score,
columns = columns,
name_mutate = name_mutate,
outlier_function = outlier_function,
combination_function = combination_function,
skip = skip,
id = id
)
)
}
step_outliers_univariate_new <-
function(terms,
role,
trained,
outlier_score,
columns,
name_mutate,
outlier_function,
combination_function,
skip,
id) {
step(
subclass = "outliers_univariate",
terms = terms,
role = role,
trained = trained,
outlier_score = outlier_score,
columns = columns,
name_mutate = name_mutate,
outlier_function = outlier_function,
combination_function = combination_function,
skip = skip,
id = id
)
}
get_train_score_univariate <- function(x,outlier_function,combination_function) {
res <- x |>
mutate(across(.cols = everything(),.fns = outlier_function)) |>
mutate(row = row_number()) |>
pivot_longer(-row) |>
group_by(row) |>
summarise(score = .data$value |> combination_function()) |>
pull(.data$score)
return(res)
}
#' @export
prep.step_outliers_univariate <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
## You can add error trapping for non-numeric data here and so on.
check_type(training[, col_names])
subset_to_check <- training[col_names]
nr_na <- colSums(is.na(subset_to_check))
if (any(nr_na > 0)) {
with_na <- names(nr_na[nr_na > 0])
with_na_str <- paste(paste0("`", with_na, "`"), collapse = ", ")
rlang::abort(paste0(
"The following columns contain missing values: ",
with_na_str, "."
))
}
outlier_score <- training[, col_names] %>% get_train_score_univariate(outlier_function = x$outlier_function,
combination_function = x$combination_function)
step_outliers_univariate_new(
terms = x$terms,
role = x$role,
trained = TRUE,
outlier_score = outlier_score,
columns = col_names,
name_mutate = x$name_mutate,
outlier_function = x$outlier_function,
combination_function = x$combination_function,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_outliers_univariate <- function(object, new_data, ...) {
new_data[[object$name_mutate]] <- object$outlier_score
new_data
}
format_prob <- function(step_outlier) {
x <- step_outlier$outlier_score
tibble::tibble(
index = seq_len(length(x)),
outlier_score = x
)
}
#' @rdname step_outliers_univariate
#' @param x A `step_outliers_univariate` object.
#' @export
tidy.step_outliers_univariate <- function(x, ...) {
if (is_trained(x)) {
res <- format_prob(x)
} else {
res <-
tibble(
index = seq_len(length(x)),
outlier_score = rlang::na_dbl
)
}
# Always return the step id:
res$id <- x$id
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.