raw_cohort_93 <- haven::read_sav(
file = "data-raw/cohort_1993_data.sav",
encoding = "utf8",
user_na = FALSE
)
cohort_1993 <- raw_cohort_93 |>
dplyr::filter(!is.na(ld011todos)) |>
dplyr::select(
# Outcome
ld011todos,
# Perinatal predictors
apartip, aconspre, anumcons,
apesomae, atrabfor, afumou,
abebalc, apesorn, acompr,
apcrn, apertor, acirab,
abpn, arenfam, aescmae,
aescpai, aganpe, aturno2,
adiasem, anenebem, afezepis,
ainduz, aprobrn, adoses,
ahipert, adiabet, aamabort,
aanemia, aintern, anumint,
aaltmae, anumgrav, aplanej,
areacpai, aapopai, aapofam,
aapoamig, atrabsem, atrabpe,
atrabpes, atrabaru, afumtrab,
atrabcas, afumava1, afumava2,
afumava3, aasmconf, aasmgrav,
aremgrav, aidadmae, aidadpai,
acorpai, acormae, alm, aapgar1,
aapgar5, aescore, adescpla,
aprolap, aespont, apelvic,
aplapre, aeclam, apreclam,
aincomp, aruptur, asofet,
aoligoh, adip, arenal,
ahemorr, apesorn2, aprimip,
apesoini, aig, aparidad,
aabodic, abpndic, acsrenda,
acspos, acsescg, aintpar,
aurindic, akessner, ahipert2,
adiabet2, aanemia2, aplanej2,
acormae2, aapopai2, aapofam2,
aturno, aapoio, aplapai,
acodbar7, acefagr, acefagr2,
atipint2, aclass,
# 11yo predictors
hm046, hm048, hm069,
hm070, hm075, hm077,
hm080, hm110, hm111,
hm112, hm113, hm114e,
hm117, hm121, hm125,
hc34, hc35, hc36, hc37,
hc38, hc39, hc40, hc41,
hc42, hc43, hc44, hc45,
hc46, hc47, hc48, hc49,
hc50, hc51, hc52, hc53,
hc54, hc55, hc56, hc57,
hc58, hc59, hc60, hc61,
hc62, hc63, hc64, hc65,
hc66, hm032,
hm040, hm041, hm042,
hm046, hm047, hm048,
hm071, hm072, hm073, hm074,
hm076, hm078, hm079, hm081,
hm107a, hm107b, hm108, hm109,
hm114a, hm114b, hm114c, hm114d,
hm115, hm116, hm119, hm123,
hm153c, hm153d, hm175, hm176,
hm177, hm178, hm179, hm180,
hm181, hm182, hm183, hm184,
hm185, hm186, hm187, hm188,
hm189, hm190, hm191, hm192,
hm193, hm194, hm195, hm196,
hm197, hm198, hm199, hm201,
hm202, hm203, hm204a, hm204b,
hm204c, hm204d, hm205, hm206,
hm207, hm208, hm209, hm210,
hm211, hm212, hm213, hm214,
hm215, hm216, hm217, hm218,
hm219, hm220, hm221, hm222,
hm223, hm224, hm225, hc13,
hc14, hibem5,
# 15yo predictors
jm097c, jm097d, jm104,
jm105, jm112, jm113,
jm114, jm115, jm116,
jm117, jm118, jm119,
jm121, jm122, jm123,
jm124, jm125, jm126,
jm127, jm128, jm129,
jm130, jm131, jm132,
jm133, jm134, jm135,
jm136, ja003, ja006,
jc02, jc03, jc04, jc05,
jc06, jc07, jc08,
jc12a, jc12b, jc12c,
jc12d, jc12e, jc12f,
jc45, jc46, jc47, jc48,
jescmae, jescmae4, jescchef,
jpcceb, jcceb8, jcceb5,
jcceb3, jcorpel3,
jm024, jm027a, jm027b, jm101,
jm111, jm137, jm138, jm139a,
jm139b, jm139c, jm139d, jm140,
ja002, ja003, ja006, ja007, jc01,
jc09, jcceb3, jrepro
) |>
haven::as_factor() |>
dplyr::mutate(ld011todos = factor(
dplyr::if_else(ld011todos == 1, "Yes", "No")
)) |>
dplyr::mutate(dplyr::across(dplyr::matches("^hc[[:digit:]]{2}$"),
\(x) as.factor(ifelse(
x %in% c(7, 8, 9),
NA_real_,
as.character(x)
)))) |>
dplyr::mutate(
dplyr::across(where(is.factor),
\(x) as.factor(
ifelse(x %in%
c("não sei ou não respondeu",
"não sei",
"9",
"99",
"não respondeu",
"IGN",
"NSA",
"8",
"EXC",
"jovem veio a clinica mas nao respondeu",
"nsa",
"ign",
"não sabe responder",
"criança especial s/informação dada pela mãe",
"5"
),
NA_character_,
as.character(x))
))
) |>
dplyr::mutate(
dplyr::across(where(is.numeric),
\(x) ifelse(x %in% c(99, 88, 77), NA_real_, x)))
usethis::use_data(cohort_1993, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.