doClustering: Cluster Determination

Description Usage Arguments Value Examples

View source: R/doClustering.R

Description

It will do clustering. If the data type is single cell data, the input must be Seurat object and it will use the “Findcluster” function in the Seurat package For any other data type, it will do hierarchical clustering.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
doClustering(
  obj,
  datatype = "RNA",
  cluster_cell = NULL,
  dims = 1:50,
  k.param = 30,
  resolution = 0.5,
  hclustmethod = "complete",
  ncluster = 3
)

Arguments

obj

A Seurat object.

datatype

Data type for your data, default is 'datatype = "RNA"', which is used for scRNAseq data.

cluster_cell

The cluster result for cells if it is already known.

dims

An integer value. Define dimensions of reduction to use as input. (Do cluster for single cell data.)

k.param

An integer value. Defines k for the k-nearest neighbor algorithm. (Do cluster for single cell data.)

resolution

Value of the resolution parameter, use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities. (Do cluster for single cell data.)

hclustmethod

The agglomeration method to be used for hierarchical clustering, defalut is "complete".

ncluster

An integer, which is the number of cluster when your input including results from hierarchical clustering.

Value

It will return a Seurat object with cluster.

Examples

1
2
3
pbmc_example <- scqc(small_pbmc_rna, min.cells = 1, min.features = 10, nfeatures = 100, npcs = 10)
pbmc_example <- doClustering(pbmc_example, dims = 1:10, k.param = 5, resolution = 0.75)
head(pbmc_example@meta.data$seurat_clusters)

cailab-tamu/scTypeGSEA documentation built on July 15, 2020, 10:56 a.m.