#' Use a linear mixed-effects model to infill and project data
#'
#' `predict_lmer()` is a simple wrapper that fits a linear mixed-effects model (LMM) to
#' infill and project data. For details surrounding the LMM fitting,
#' please see [lme4::lmer()] and for more details on the augury function
#' this wraps around and the various arguments this function accepts, please see
#' [predict_lme4()].
#'
#' @inherit predict_general_mdl params return
#' @param REML Flag passed directly to lme4::lmer(). From `lme4` docs: "logical scalar - Should the estimates be chosen to optimize the REML criterion (as opposed to the log-likelihood)?"
#'
#' @export
predict_lmer <- function(df,
formula,
...,
ret = c("df", "all", "error", "model"),
scale = NULL,
probit = FALSE,
test_col = NULL,
group_col = "iso3",
group_models = FALSE,
obs_filter = NULL,
sort_col = "year",
sort_descending = FALSE,
pred_col = "pred",
pred_upper_col = "pred_upper",
pred_lower_col = "pred_lower",
upper_col = "upper",
lower_col = "lower",
filter_na = c("all", "response", "predictors", "none"),
type_col = NULL,
types = c("imputed", "imputed", "projected"),
source_col = NULL,
source = NULL,
scenario_detail_col = NULL,
scenario_detail = NULL,
replace_obs = c("missing", "all", "none"),
error_correct = FALSE,
error_correct_cols = NULL,
shift_trend = FALSE,
REML = TRUE) {
predict_lme4(df = df,
model = lme4::lmer,
formula = formula,
...,
ret = ret,
scale = scale,
probit = probit,
test_col = test_col,
group_col = group_col,
group_models = group_models,
obs_filter = obs_filter,
sort_col = sort_col,
sort_descending = sort_descending,
pred_col = pred_col,
pred_upper_col = pred_upper_col,
pred_lower_col = pred_lower_col,
upper_col = upper_col,
lower_col = lower_col,
filter_na = filter_na,
type_col = type_col,
types = types,
source_col = source_col,
source = source,
scenario_detail_col = scenario_detail_col,
scenario_detail = scenario_detail,
replace_obs = replace_obs,
error_correct = error_correct,
error_correct_cols = error_correct_cols,
shift_trend = shift_trend,
REML = REML)
}
#' Use a generalized linear mixed-effects model to infill and project data
#'
#' `predict_lmer()` is a simple wrapper that fits a generalized linear mixed-effects
#' model (GLMM) to infill and project data. For details surrounding the GLMM fitting,
#' please see [lme4::glmer()] and for more details on the augury function
#' this wraps around and the various arguments this function accepts, please see
#' [predict_lme4()].
#'
#' @inherit predict_general_mdl params return
#'
#' @export
predict_glmer <- function(df,
formula,
...,
ret = c("df", "all", "error", "model"),
scale = NULL,
probit = FALSE,
test_col = NULL,
group_col = "iso3",
group_models = FALSE,
obs_filter = NULL,
sort_col = "year",
sort_descending = FALSE,
pred_col = "pred",
pred_upper_col = "pred_upper",
pred_lower_col = "pred_lower",
upper_col = "upper",
lower_col = "lower",
filter_na = c("all", "response", "predictors", "none"),
type_col = NULL,
types = c("imputed", "imputed", "projected"),
source_col = NULL,
source = NULL,
scenario_detail_col = NULL,
scenario_detail = NULL,
replace_obs = c("missing", "all", "none"),
error_correct = FALSE,
error_correct_cols = NULL,
shift_trend = FALSE) {
predict_lme4(df = df,
model = lme4::glmer,
formula = formula,
...,
ret = ret,
scale = scale,
probit = probit,
test_col = test_col,
group_col = group_col,
group_models = group_models,
obs_filter = obs_filter,
sort_col = sort_col,
sort_descending = sort_descending,
pred_col = pred_col,
pred_upper_col = pred_upper_col,
pred_lower_col = pred_lower_col,
upper_col = upper_col,
lower_col = lower_col,
filter_na = filter_na,
type_col = type_col,
types = types,
source_col = source_col,
source = source,
scenario_detail_col = scenario_detail_col,
scenario_detail = scenario_detail,
replace_obs = replace_obs,
error_correct = error_correct,
error_correct_cols = error_correct_cols,
shift_trend = shift_trend)
}
#' Use a non-linear mixed-effects model to infill and project data
#'
#' `predict_nlmer()` is a simple wrapper that fits a non-linear mixed-effects
#' model (GLMM) to infill and project data. For details surrounding the GLMM fitting,
#' please see [lme4::nlmer()] and for more details on the augury function
#' this wraps around and the various arguments this function accepts, please see
#' [predict_lme4()].
#'
#' @inherit predict_general_mdl params return
#'
#' @export
predict_nlmer <- function(df,
formula,
...,
ret = c("df", "all", "error", "model"),
scale = NULL,
probit = FALSE,
test_col = NULL,
group_col = "iso3",
group_models = FALSE,
obs_filter = NULL,
sort_col = "year",
sort_descending = FALSE,
pred_col = "pred",
pred_upper_col = "pred_upper",
pred_lower_col = "pred_lower",
upper_col = "upper",
lower_col = "lower",
filter_na = c("all", "response", "predictors", "none"),
type_col = NULL,
types = c("imputed", "imputed", "projected"),
source_col = NULL,
source = NULL,
scenario_detail_col = NULL,
scenario_detail = NULL,
replace_obs = c("missing", "all", "none"),
error_correct = FALSE,
error_correct_cols = NULL,
shift_trend = FALSE) {
predict_lme4(df = df,
model = lme4::nlmer,
formula = formula,
...,
ret = ret,
scale = scale,
probit = probit,
test_col = test_col,
group_col = group_col,
group_models = group_models,
obs_filter = obs_filter,
sort_col = sort_col,
sort_descending = sort_descending,
pred_col = pred_col,
pred_upper_col = pred_upper_col,
pred_lower_col = pred_lower_col,
upper_col = upper_col,
lower_col = lower_col,
filter_na = filter_na,
type_col = type_col,
types = types,
source_col = source_col,
source = source,
scenario_detail_col = scenario_detail_col,
scenario_detail = scenario_detail,
replace_obs = replace_obs,
error_correct = error_correct,
error_correct_cols = error_correct_cols,
shift_trend = shift_trend)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.