Description Usage Arguments Methods Examples
The Class GGMfit
estimate a Gaussian Graphical Model. It can use 5 different models and associated estimation procedure
with or without bagging.
Three of the algorithms (em.latent.trees
, em.glasso
, em.chow.liu
) take into account missing variables while the two other do not (glasso
,
chow.liu
).
1 |
- X
A data.frame, which will be used as input data for the inference
- nb.missing.var
Number of missing variable (0 by default)
- method
The name of the estimation procedure (em.latent.trees
, em.glasso
, em.chow.liu
, glasso
,
chow.liu
)
- fit.number
Number of evaluation point (20 by default)
- K.score
Array of prediction of edges. The array is 2 dimensional homogeneous in dimension to the adjacency matrix of the graph to be inferred.
$new(X,method="glasso",nb.missing.var=0,fit.number=20,...)
Initialize the experiment
$run(bagging=FALSE,nb.bootstrap=29)
Running the experiment (with or without using bagging)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ## Not run:
star.graph <- graphModel$new(type = "starerdos",size=30, p.or.m = 0.05)
star.model <- GGMmodel$new(graph=star.graph)
star.model.missing <- GGMmodel$new(graph=star.graph,nb.missing.var= 1)
dim(star.model.missing$getAdjmat())
dim(star.model.missing$getAdjmatCond())
star.model.missing$randomSample(n=60)
dim(star.model.missing$getX())
dim(star.model.missing$getXobs())
star.model.missing.fit <-GGMfit$new(star.model.missing$getXobs(),fit.number = 20,method="glasso")
star.model.missing.fit$run()
star.model.missing.fit2 <-GGMfit$new(star.model.missing$getXobs(),nb.missing.var= 1,fit.number = 20,method="em.latent.trees")
star.model.missing.fit2$run()
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.