Description Usage Arguments Methods Examples
The class aims at comparing multiple Gaussian Graphical Model Inference procedure when a ground truth is available
1 | experiment = GGMexperiment$new(X.list, adjmat, methods=c("glasso","em.latent.trees"))
|
- X.list
A list of data.frame, which will be used as input data for the inference
- adjmat
The ground truth adjacency matrix used for the evaluation (roc curve)
- nb.missing.var
Number of missing variable (0 by default)
- methods
A vector of characters list the methods to be tested (see GGMfit for the list of possible methods)
- fit.number
Number of evaluation point (20 by default)
- nb.sample
Number of data frame in X.list (set automatically while initializing the object)
- K.score.array
Array of prediction of edges. The array is 3 dimensional (2 first dimension for storing a results, third dimension for compiling all results)
- prediction
A dataframe with 3 columns (prediction, label and method) used for methods evaluation
$new(X.list=NULL,adjmat=NULL,nb.missing.var=0,methods="glasso",fit.number=20)
Initialize the experiment
$run(bagging=FALSE)
Running the experiment (with or without using bagging)
$roc.plot()
Plot the roc curves (all methods on the same plot)
1 2 3 4 5 6 7 8 9 10 11 | ## Not run:
star.graph <- graphModel$new(type = "starerdos",size=30, p.or.m = 0.05)
star.model <- GGMmodel$new(graph=star.graph)
plot(star.model)
star.model$randomSample(n=50)
testingGlasso<-GGMexperiment$new(X.list = list(star.model$getX()), adjmat = star.model$getAdjmat())
testingGlasso$run()
print(glasso.auc<-testingGlasso$auc())
testingGlasso$roc.plot()
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.