#' @title plot_fit_score
#'
#' @description Can be used after completed ICLite run to plot output fit scoring vs input
#' rho, connectivity and number of assumed clusters. Size of dots are related to scaled fit
#' scoring. Coloration indicates number of clusters in gene clustering solution.
#'
#' @return Plot of ICLite fit scoring by input parameters
#' @export
plot_fit_score<-function(){
converted_tradeoff<-tradeoff_score+min(tradeoff_score, na.rm = T)
converted_tradeoff[is.na(converted_tradeoff)]<-0
Fit_Score<-20^converted_tradeoff
combo_mat<-cbind(choice_mat, Fit_Score)
combo_mat$number_of_clusters<-factor(as.numeric(choice_mat$number_of_clusters))
b<-ggplot2::ggplot(combo_mat, aes(x=input_connectivities, y=input_rho)) +
geom_point(aes(colour = number_of_clusters, size = Fit_Score)) +
ylim(0.3, (max(combo_mat$input_rho)+0.025))+
xlim((min(combo_mat$input_connectivities)-50), (max(combo_mat$input_connectivities)+50))
png("ICLite fit scoring.png", height = 1200, width = 1200, res = 300)
plot(b)
dev.off()
print(paste0("The optimal conditions are: rho = ", chosen_rho))
print(paste0("Connectivity = ", chosen_connectivity))
print(paste0("Number of clusters = ", chosen_num_clust))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.