View source: R/fit_mvn_smooth.R
fit_mvn_smooth | R Documentation |
Implement Gibbs sampling for MVN model with spatial smoothing
fit_mvn_smooth(
Y,
coords_df,
K,
r,
nsim = 2000,
burn = 1000,
z_init = NULL,
verbose = FALSE
)
Y |
An n x g matrix of gene expression values. n is the number of cell spots and g is the number of features. |
coords_df |
An n x 2 data frame or matrix of 2d spot coordinates. |
K |
The number of mixture components to fit. |
r |
Empirical spatial smoothing |
nsim |
Number of total MCMC iterations to run. |
burn |
Number of MCMC iterations to discard as burn in. The number of saved samples is nsim - burn. |
z_init |
Optional initialized allocation vector. Randomly initialized if NULL. |
verbose |
Logical for printing cluster allocations at each iteration. |
a list of posterior samples
## Not run:
# parameters
data(coords_df_sim)
coords_df <- coords_df_sim[,1:2]
z <- remap_canonical2(coords_df_sim$z)
W_nn <- scran::buildKNNGraph(as.matrix(coords_df),
k = 4,
transposed = TRUE)
A <- igraph::as_adjacency_matrix(W_nn,
type = "both",
sparse = FALSE)
n <- nrow(coords_df) # number of observations
g <- 3 # number of features
K <- length(unique(coords_df_sim$z)) # number of clusters (mixture components)
pi <- table(z)/length(z) # cluster membership probability
# Cluster Specific Parameters
# cluster specific means
Mu <- list(
Mu1 = rnorm(g,-2,1),
Mu2 = rnorm(g,-1,1),
Mu3 = rnorm(g,1,1),
Mu4 = rnorm(g,2,1)
)
# cluster specific variance-covariance
S <- matrix(0.5,nrow = g,ncol = g) # y covariance matrix
diag(S) <- 1
Sig <- list(
Sig1 = S,
Sig2 = S,
Sig3 = S,
Sig4 = S
)
Y <- matrix(0, nrow = n, ncol = g)
for(i in 1:n)
{
Y[i,] <- mvtnorm::rmvnorm(1,mean = Mu[[z[i]]],sigma = Sig[[z[i]]])
}
# sometimes helps to initialize using heuristic like kmeans
fitk <- stats::kmeans(Y,4)
z_km <- remap_canonical2(fitk$cluster)
# fit model
# use more iterations in practice
fit1 <- fit_mvn_smooth(Y,coords_df,4,2,10,0,z_km)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.