get_map | R Documentation |
Compute maximum aposteriori (MAP) estimate of cluster indicators
get_map(z)
z |
All cluster indicator posterior samples from a given cell spot |
MAP estimate of cluster labels. Useful applied over columns of posterior samples matrix (see example)
# parameters
n <- 100 # number of observations
g <- 3 # number of features
K <- 3 # number of clusters (mixture components)
pi <- rep(1/K,K) # cluster membership probability
z <- sample(1:K, size = n, replace = TRUE, prob = pi) # cluster indicators
z <- remap_canonical2(z)
# Cluster Specific Parameters
# cluster specific means
Mu <- list(
Mu1 = rnorm(g,-5,1),
Mu2 = rnorm(g,0,1),
Mu3 = rnorm(g,5,1)
)
# cluster specific variance-covariance
S <- matrix(1,nrow = g,ncol = g) # covariance matrix
diag(S) <- 1.5
Sig <- list(
Sig1 = S,
Sig2 = S,
Sig3 = S
)
Y <- matrix(0, nrow = n, ncol = g)
for(i in 1:n)
{
Y[i,] <- mvtnorm::rmvnorm(1,mean = Mu[[z[i]]],sigma = Sig[[z[i]]])
}
# fit model
fit1 <- fit_mvn(Y,3,100,0)
# Apply get_map() to columns of Z (i.e., posterior samples from each cell spot)
z_map <- apply(fit1$Z, 2, get_map)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.