fuzzyindex: Calculate fuzzy ground truth.

View source: R/mnems.r

fuzzyindexR Documentation

Calculate fuzzy ground truth.

Description

Calculates responsibilities and mixture weights based on the ground truth and noisy data.

Usage

fuzzyindex(x, data, logtype = 2, complete = FALSE, marginal = FALSE, ...)

Arguments

x

mnem_sim object

data

noisy data matrix

logtype

logarithm type of the data

complete

if TRUE, complete data log likelihood is considered (for very large data sets, e.g. 1000 cells and 1000 E-genes)

marginal

logical to compute the marginal likelihood (TRUE)

...

additional parameters for the function getAffinity

Value

list with cell log odds mixture weights and log likelihood

Author(s)

Martin Pirkl

Examples

sim <- simData(Sgenes = 3, Egenes = 2, Nems = 2, mw = c(0.4,0.6))
data <- sim$data
data[which(sim$data == 1)] <- rnorm(sum(sim$data == 1), 1, 1)
data[which(sim$data == 0)] <- rnorm(sum(sim$data == 0), -1, 1)
fuzzy <- fuzzyindex(sim, data)

cbg-ethz/mnem documentation built on Nov. 7, 2024, 7:35 p.m.