inst/examples/BUGS/parametric-vs-nonparametric.md

Comparison of Nonparametric Bayesian Gaussian Process estimates to standard the Parametric Bayesian approach

Plotting and knitr options, (can generally be ignored)

require(modeest)
posterior.mode <- function(x) {
  mlv(x, method="shorth")$M
}

Model and parameters

f <- Myers
p <- c(1, 2, 6)
K <- 5  # approx, a li'l' less
allee <- 1.2 # approx, a li'l' less

Various parameters defining noise dynamics, grid, and policy costs.

sigma_g <- 0.05
sigma_m <- 0.0
z_g <- function() rlnorm(1, 0, sigma_g)
z_m <- function() 1+(2*runif(1, 0,  1)-1) * sigma_m
x_grid <- seq(0, 1.5 * K, length=50)
h_grid <- x_grid
profit <- function(x,h) pmin(x, h)
delta <- 0.01
OptTime <- 50  # stationarity with unstable models is tricky thing
reward <- 0
xT <- 0
Xo <-  allee+.5# observations start from
x0 <- K # simulation under policy starts from
Tobs <- 40

Sample Data

  set.seed(1234)
  #harvest <- sort(rep(seq(0, .5, length=7), 5))
  x <- numeric(Tobs)
  x[1] <- Xo
  nz <- 1
  for(t in 1:(Tobs-1))
    x[t+1] = z_g() * f(x[t], h=0, p=p)
  obs <- data.frame(x = c(rep(0,nz), 
                          pmax(rep(0,Tobs-1), x[1:(Tobs-1)])), 
                    y = c(rep(0,nz), 
                          x[2:Tobs]))
raw_plot <- ggplot(data.frame(time = 1:Tobs, x=x), aes(time,x)) + geom_line()
raw_plot

plot of chunk obs

Maximum Likelihood

set.seed(12345)
estf <- function(p){ 
    mu <- f(obs$x,0,p)
    -sum(dlnorm(obs$y, log(mu), p[4]), log=TRUE)
}
par <- c(p[1]*rlnorm(1,0,.2), 
         p[2]*rlnorm(1,0,.1), 
         p[3]*rlnorm(1,0, .1), 
         sigma_g * rlnorm(1,0,.3))
o <- optim(par, estf, method="L", lower=c(1e-5,1e-5,1e-5,1e-5))
f_alt <- f
p_alt <- c(as.numeric(o$par[1]), as.numeric(o$par[2]), as.numeric(o$par[3]))
sigma_g_alt <- as.numeric(o$par[4])

est <- list(f = f_alt, p = p_alt, sigma_g = sigma_g_alt, mloglik=o$value)

Mean predictions

true_means <- sapply(x_grid, f, 0, p)
est_means <- sapply(x_grid, est$f, 0, est$p)

Non-parametric Bayes

#inv gamma has mean b / (a - 1) (assuming a>1) and variance b ^ 2 / ((a - 2) * (a - 1) ^ 2) (assuming a>2)
s2.p <- c(5,5)  
d.p = c(10, 1/0.1)

Estimate the Gaussian Process (nonparametric Bayesian fit)

gp <- gp_mcmc(obs$x, y=obs$y, n=1e5, s2.p = s2.p, d.p = d.p)
gp_dat <- gp_predict(gp, x_grid, burnin=1e4, thin=300)

Show traces and posteriors against priors

plots <- summary_gp_mcmc(gp, burnin=1e4, thin=300)

plot of chunk gp_traces_densities plot of chunk gp_traces_densities

# Summarize the GP model
tgp_dat <- 
    data.frame(  x = x_grid, 
                 y = gp_dat$E_Ef, 
                 ymin = gp_dat$E_Ef - 2 * sqrt(gp_dat$E_Vf), 
                 ymax = gp_dat$E_Ef + 2 * sqrt(gp_dat$E_Vf) )

Parametric Bayesian Models

We use the JAGS Gibbs sampler, a recent open source BUGS implementation with an R interface that works on most platforms. We initialize the usual MCMC parameters; see ?jags for details.

All parametric Bayesian estimates use the following basic parameters for the JAGS MCMC:

y <- x 
N <- length(x);
jags.data <- list("N","y")
n.chains <- 6
n.iter <- 1e6
n.burnin <- floor(10000)
n.thin <- max(1, floor(n.chains * (n.iter - n.burnin)/1000))
n.update <- 10

We will use the same priors for process and observation noise in each model,

stdQ_prior_p <- c(1e-6, 100)
stdR_prior_p <- c(1e-6, .1)
stdQ_prior  <- function(x) dunif(x, stdQ_prior_p[1], stdQ_prior_p[2])
stdR_prior  <- function(x) dunif(x, stdR_prior_p[1], stdR_prior_p[2])

Parametric Bayes of correct (Allen) model

We initiate the MCMC chain (init_p) using the true values of the parameters p from the simulation. While impossible in real data, this gives the parametric Bayesian approach the best chance at succeeding. y is the timeseries (recall obs has the $x_t$, $x_{t+1}$ pairs)

The actual model is defined in a model.file that contains an R function that is automatically translated into BUGS code by R2WinBUGS. The file defines the priors and the model. We write the file from R as follows:

K_prior_p <- c(0.01, 20.0)
r0_prior_p <- c(0.01, 6.0)
theta_prior_p <- c(0.01, 20.0)

bugs.model <- 
paste(sprintf(
"model{
  K     ~ dunif(%s, %s)
  r0    ~ dunif(%s, %s)
  theta ~ dunif(%s, %s)
  stdQ ~ dunif(%s, %s)", 
  K_prior_p[1], K_prior_p[2],
  r0_prior_p[1], r0_prior_p[2],
  theta_prior_p[1], theta_prior_p[2],
  stdQ_prior_p[1], stdQ_prior_p[2]),

  "
  iQ <- 1 / (stdQ * stdQ);
  y[1] ~ dunif(0, 10)
  for(t in 1:(N-1)){
    mu[t] <- log(y[t]) + r0 * (1 - y[t]/K)* (y[t] - theta) / K 
    y[t+1] ~ dlnorm(mu[t], iQ) 
  }
}")
writeLines(bugs.model, "allen_process.bugs")

Write the priors into a list for later reference

K_prior     <- function(x) dunif(x, K_prior_p[1], K_prior_p[2])
r0_prior <- function(x) dunif(x, r0_prior_p[1], r0_prior_p[2])
theta_prior <- function(x) dunif(x, theta_prior_p[1], theta_prior_p[2])
par_priors  <- list(K = K_prior, deviance = function(x) 0 * x, 
                    r0 = r0_prior, theta = theta_prior,
                    stdQ = stdQ_prior)

We define which parameters to keep track of, and set the initial values of parameters in the transformed space used by the MCMC. We use logarithms to maintain strictly positive values of parameters where appropriate.

jags.params=c("K","r0","theta","stdQ") # be sensible about the order here
jags.inits <- function(){
  list("K"= 8 * rlnorm(1,0, 0.1),
       "r0"= 2 * rlnorm(1,0, 0.1) ,
       "theta"=   5 * rlnorm(1,0, 0.1) , 
       "stdQ"= abs( 0.1 * rlnorm(1,0, 0.1)),
       .RNG.name="base::Wichmann-Hill", .RNG.seed=123)
}

set.seed(1234)
# parallel refuses to take variables as arguments (e.g. n.iter = 1e5 works, but n.iter = n doesn't)
allen_jags <- do.call(jags.parallel, list(data=jags.data, inits=jags.inits, 
                                      jags.params, n.chains=n.chains, 
                                      n.iter=n.iter, n.thin=n.thin, 
                                      n.burnin=n.burnin, 
                                      model.file="allen_process.bugs"))

# Run again iteratively if we haven't met the Gelman-Rubin convergence criterion
recompile(allen_jags) # required for parallel
allen_jags <- do.call(autojags, 
                                            list(object=allen_jags, n.update=n.update, 
                           n.iter=n.iter, n.thin = n.thin))

Convergence diagnostics for Allen model

R notes: this strips classes from the mcmc.list object (so that we have list of matrices; objects that reshape2::melt can handle intelligently), and then combines chains into one array. In this array each parameter is given its value at each sample from the posterior (index) for each chain.

tmp <- lapply(as.mcmc(allen_jags), as.matrix) # strip classes the hard way...
allen_posteriors <- melt(tmp, id = colnames(tmp[[1]])) 
names(allen_posteriors) = c("index", "variable", "value", "chain")
ggplot(allen_posteriors) + geom_line(aes(index, value)) + 
  facet_wrap(~ variable, scale="free", ncol=1)

plot of chunk allen-traces

allen_priors <- ddply(allen_posteriors, "variable", function(dd){
    grid <- seq(min(dd$value), max(dd$value), length = 100) 
    data.frame(value = grid, density = par_priors[[dd$variable[1]]](grid))
})

ggplot(allen_posteriors, aes(value)) + 
  stat_density(geom="path", position="identity", alpha=0.7) +
  geom_line(data=allen_priors, aes(x=value, y=density), col="red") + 
  facet_wrap(~ variable, scale="free", ncol=3)

plot of chunk allen-posteriors

Reshape the posterior parameter distribution data, transform back into original space, and calculate the mean parameters and mean function

A <- allen_posteriors
A$index <- A$index + A$chain * max(A$index) # Combine samples across chains by renumbering index 
pardist <- acast(A, index ~ variable)
bayes_coef <- apply(pardist,2, posterior.mode) 
bayes_pars <- unname(c(bayes_coef["r0"], bayes_coef["K"], bayes_coef["theta"])) # parameters formatted for f
allen_f <- function(x,h,p) unname(RickerAllee(x,h, unname(p[c("r0", "K", "theta")])))
allen_means <- sapply(x_grid, f, 0, bayes_pars)
bayes_pars
[1] 0.7082 4.5647 0.2558
head(pardist)
        K deviance     r0    stdQ  theta
170 4.531   -8.534 0.6867 0.04473 0.3832
171 4.516    1.335 0.6471 0.05928 1.0216
172 4.574   -8.576 0.8532 0.04983 0.7196
173 4.614   -6.873 0.5302 0.04611 0.1390
174 4.628   -5.580 0.7331 0.04024 0.5064
175 4.503   -7.443 0.7341 0.04474 0.2369

Parametric Bayes based on the structurally wrong model (Ricker)

K_prior_p <- c(0.01, 40.0)
r0_prior_p <- c(0.01, 20.0)
bugs.model <- 
paste(sprintf(
"model{
  K    ~ dunif(%s, %s)
  r0    ~ dunif(%s, %s)
  stdQ ~ dunif(%s, %s)", 
  K_prior_p[1], K_prior_p[2],
  r0_prior_p[1], r0_prior_p[2],
  stdQ_prior_p[1], stdQ_prior_p[2]),
  "
  iQ <- 1 / (stdQ * stdQ);
  y[1] ~ dunif(0, 10)
  for(t in 1:(N-1)){
    mu[t] <- log(y[t]) + r0 * (1 - y[t]/K) 
    y[t+1] ~ dlnorm(mu[t], iQ) 
  }
}")
writeLines(bugs.model, "ricker_process.bugs")

Compute prior curves

K_prior     <- function(x) dunif(x, K_prior_p[1], K_prior_p[2])
r0_prior <- function(x) dunif(x, r0_prior_p[1], r0_prior_p[2])
par_priors <- list(K = K_prior, deviance = function(x) 0 * x, 
                   r0 = r0_prior, stdQ = stdQ_prior)

We define which parameters to keep track of, and set the initial values of parameters in the transformed space used by the MCMC.

jags.params=c("K","r0", "stdQ")
jags.inits <- function(){
  list("K"=10 * rlnorm(1,0,.5),
       "r0"= rlnorm(1,0,.5),
       "stdQ"=sqrt(0.05) * rlnorm(1,0,.5),
       .RNG.name="base::Wichmann-Hill", .RNG.seed=123)
}
set.seed(12345) 
ricker_jags <- do.call(jags.parallel, 
                       list(data=jags.data, inits=jags.inits, 
                            jags.params, n.chains=n.chains, 
                            n.iter=n.iter, n.thin=n.thin, n.burnin=n.burnin,
                            model.file="ricker_process.bugs"))
recompile(ricker_jags)
Compiling model graph
   Resolving undeclared variables
   Allocating nodes
   Graph Size: 249

Initializing model

Compiling model graph
   Resolving undeclared variables
   Allocating nodes
   Graph Size: 249

Initializing model

Compiling model graph
   Resolving undeclared variables
   Allocating nodes
   Graph Size: 249

Initializing model

Compiling model graph
   Resolving undeclared variables
   Allocating nodes
   Graph Size: 249

Initializing model

Compiling model graph
   Resolving undeclared variables
   Allocating nodes
   Graph Size: 249

Initializing model

Compiling model graph
   Resolving undeclared variables
   Allocating nodes
   Graph Size: 249

Initializing model
ricker_jags <- do.call(autojags, 
                       list(object=ricker_jags, n.update=n.update, 
                                                        n.iter=n.iter, n.thin = n.thin, 
                                                        progress.bar="none"))

Convergence diagnostics for parametric bayes Ricker model

tmp <- lapply(as.mcmc(ricker_jags), as.matrix) # strip classes the hard way...
ricker_posteriors <- melt(tmp, id = colnames(tmp[[1]])) 
names(ricker_posteriors) = c("index", "variable", "value", "chain")

ggplot(ricker_posteriors) + geom_line(aes(index, value)) + 
  facet_wrap(~ variable, scale="free", ncol=1)

plot of chunk ricker-traces

ricker_priors <- ddply(ricker_posteriors, "variable", function(dd){
    grid <- seq(min(dd$value), max(dd$value), length = 100) 
    data.frame(value = grid, density = par_priors[[dd$variable[1]]](grid))
})
# plot posterior distributions
ggplot(ricker_posteriors, aes(value)) + 
  stat_density(geom="path", position="identity", alpha=0.7) +
  geom_line(data=ricker_priors, aes(x=value, y=density), col="red") + 
  facet_wrap(~ variable, scale="free", ncol=2)

plot of chunk ricker-posteriors

Reshape posteriors data, transform back, calculate mode and corresponding function.

A <- ricker_posteriors
A$index <- A$index + A$chain * max(A$index) # Combine samples across chains by renumbering index 
ricker_pardist <- acast(A, index ~ variable)
bayes_coef <- apply(ricker_pardist,2, posterior.mode) 
ricker_bayes_pars <- unname(c(bayes_coef["r0"], bayes_coef["K"]))
ricker_f <- function(x,h,p){
  sapply(x, function(x){ 
    x <- pmax(0, x-h) 
    pmax(0, x * exp(p["r0"] * (1 - x / p["K"] )) )
  })
}
ricker_means <- sapply(x_grid, Ricker, 0, ricker_bayes_pars[c(1,2)])
head(ricker_pardist)
        K deviance     r0    stdQ
170 4.796  -2.4558 0.2928 0.05125
171 4.604   4.2228 0.4464 0.06022
172 4.579  -3.6943 0.2798 0.05368
173 4.727   0.8348 0.2275 0.06162
174 4.686   0.1420 0.2346 0.04685
175 4.361  -0.5967 0.2783 0.05220
ricker_bayes_pars
[1] 0.302 4.597

Myers Parametric Bayes

r0_prior_p <- c(.0001, 10.0)
theta_prior_p <- c(.0001, 10.0)
K_prior_p <- c(.0001, 40.0)
bugs.model <- 
paste(sprintf(
"model{
  r0    ~ dunif(%s, %s)
  theta    ~ dunif(%s, %s)
  K    ~ dunif(%s, %s)
  stdQ ~ dunif(%s, %s)", 
  r0_prior_p[1], r0_prior_p[2],
  theta_prior_p[1], theta_prior_p[2],
  K_prior_p[1], K_prior_p[2],
  stdQ_prior_p[1], stdQ_prior_p[2]),

  "
  iQ <- 1 / (stdQ * stdQ);

  y[1] ~ dunif(0, 10)
  for(t in 1:(N-1)){
    mu[t] <- log(r0)  + theta * log(y[t]) - log(1 + pow(abs(y[t]), theta) / K)
    y[t+1] ~ dlnorm(mu[t], iQ) 
  }
}")
writeLines(bugs.model, "myers_process.bugs")
K_prior     <- function(x) dunif(x, K_prior_p[1], K_prior_p[2])
r_prior     <- function(x) dunif(x, r0_prior_p[1], r0_prior_p[2])
theta_prior <- function(x) dunif(x, theta_prior_p[1], theta_prior_p[2])
par_priors <- list( deviance = function(x) 0 * x, K = K_prior,
                    r0 = r_prior, theta = theta_prior, 
                    stdQ = stdQ_prior)
jags.params=c("r0", "theta", "K", "stdQ")
jags.inits <- function(){
  list("r0"= rlnorm(1,0,.1), 
       "K"=    6 * rlnorm(1,0,.1),
       "theta" = 2 * rlnorm(1,0,.1),  
       "stdQ"= 0.1 * rlnorm(1,0,.1),
       .RNG.name="base::Wichmann-Hill", .RNG.seed=123)
}
set.seed(12345)
myers_jags <- do.call(jags.parallel, 
                      list(data=jags.data, inits=jags.inits, 
                                                     jags.params, n.chains=n.chains, 
                                                     n.iter=n.iter, n.thin=n.thin,
                           n.burnin=n.burnin, 
                           model.file="myers_process.bugs"))
recompile(myers_jags)
Compiling model graph
   Resolving undeclared variables
   Allocating nodes
   Graph Size: 406

Initializing model

Compiling model graph
   Resolving undeclared variables
   Allocating nodes
   Graph Size: 406

Initializing model

Compiling model graph
   Resolving undeclared variables
   Allocating nodes
   Graph Size: 406

Initializing model

Compiling model graph
   Resolving undeclared variables
   Allocating nodes
   Graph Size: 406

Initializing model

Compiling model graph
   Resolving undeclared variables
   Allocating nodes
   Graph Size: 406

Initializing model

Compiling model graph
   Resolving undeclared variables
   Allocating nodes
   Graph Size: 406

Initializing model
myers_jags <- do.call(autojags, 
                      list(myers_jags, n.update=n.update, 
                           n.iter=n.iter, n.thin = n.thin, 
                           progress.bar="none"))

Convergence diagnostics for parametric bayes

tmp <- lapply(as.mcmc(myers_jags), as.matrix) # strip classes
myers_posteriors <- melt(tmp, id = colnames(tmp[[1]])) 
names(myers_posteriors) = c("index", "variable", "value", "chain")
ggplot(myers_posteriors) + geom_line(aes(index, value)) +
  facet_wrap(~ variable, scale="free", ncol=1)

plot of chunk myers-traces

par_prior_curves <- ddply(myers_posteriors, "variable", function(dd){
    grid <- seq(min(dd$value), max(dd$value), length = 100) 
    data.frame(value = grid, density = par_priors[[dd$variable[1]]](grid))
})

ggplot(myers_posteriors, aes(value)) + 
  stat_density(geom="path", position="identity", alpha=0.7) +
  geom_line(data=par_prior_curves, aes(x=value, y=density), col="red") + 
  facet_wrap(~ variable, scale="free", ncol=3)

plot of chunk myers-posteriors

A <- myers_posteriors
A$index <- A$index + A$chain * max(A$index) # Combine samples across chains by renumbering index 
myers_pardist <- acast(A, index ~ variable)
bayes_coef <- apply(myers_pardist,2, posterior.mode) # much better estimates
myers_bayes_pars <- unname(c(bayes_coef[2], bayes_coef[3], bayes_coef[1]))
myers_means <- sapply(x_grid, Myer_harvest, 0, myers_bayes_pars)
myers_f <- function(x,h,p) Myer_harvest(x, h, p[c("r0", "theta", "K")])
head(myers_pardist)
        K deviance     r0    stdQ theta
170 5.444  -11.950 1.0954 0.04771 1.879
171 5.791  -11.106 1.0380 0.04859 1.939
172 6.866  -10.293 0.7794 0.04780 2.390
173 6.454   -8.193 0.9440 0.05598 1.942
174 6.509  -10.105 0.8041 0.04375 2.444
175 7.039   -9.427 0.7927 0.04561 2.297
myers_bayes_pars
[1] -10.158   1.001   5.891

Phase-space diagram of the expected dynamics

models <- data.frame(x=x_grid, 
                                         GP=tgp_dat$y, 
                                         True=true_means, 
                     MLE=est_means, 
                                         Ricker=ricker_means, 
                     Allen = allen_means,
                     Myers = myers_means)
models <- melt(models, id="x")

# some labels
names(models) <- c("x", "method", "value")

# labels for the colorkey too
model_names = c("GP", "True", "MLE", "Ricker", "Allen", "Myers")
colorkey=cbPalette
names(colorkey) = model_names 
plot_gp <- ggplot(tgp_dat) + geom_ribbon(aes(x,y,ymin=ymin,ymax=ymax), fill="gray80") +
    geom_line(data=models, aes(x, value, col=method), lwd=1, alpha=0.8) + 
    geom_point(data=obs, aes(x,y), alpha=0.8) + 
    xlab(expression(X[t])) + ylab(expression(X[t+1])) +
    scale_colour_manual(values=cbPalette) 
print(plot_gp)

plot of chunk Figure1

Goodness of fit

This shows only the mean predictions. For the Bayesian cases, we can instead loop over the posteriors of the parameters (or samples from the GP posterior) to get the distribution of such curves in each case.

require(MASS)
step_ahead <- function(x, f, p){
  h = 0
  x_predict <- sapply(x, f, h, p)
  n <- length(x_predict) - 1
  y <- c(x[1], x_predict[1:n])
  y
}
step_ahead_posteriors <- function(x){
gp_f_at_obs <- gp_predict(gp, x, burnin=1e4, thin=300)
df_post <- melt(lapply(sample(100), 
  function(i){
    data.frame(time = 1:length(x), stock = x, 
                GP = mvrnorm(1, gp_f_at_obs$Ef_posterior[,i], gp_f_at_obs$Cf_posterior[[i]]),
                True = step_ahead(x,f,p),  
                MLE = step_ahead(x,f,est$p), 
                Allen = step_ahead(x, allen_f, pardist[i,]), 
                Ricker = step_ahead(x, ricker_f, ricker_pardist[i,]), 
                Myers = step_ahead(x, myers_f, myers_pardist[i,]))
  }), id=c("time", "stock"))
}

df_post <- step_ahead_posteriors(x)

ggplot(df_post) + geom_point(aes(time, stock)) + 
  geom_line(aes(time, value, col=variable, group=interaction(L1,variable)), alpha=.1) + 
  scale_colour_manual(values=colorkey, guide = guide_legend(override.aes = list(alpha = 1))) 

plot of chunk Figureb

Optimal policies by value iteration

Compute the optimal policy under each model using stochastic dynamic programming. We begin with the policy based on the GP model,

MaxT = 1000
# uses expected values from GP, instead of integrating over posterior
#matrices_gp <- gp_transition_matrix(gp_dat$E_Ef, gp_dat$E_Vf, x_grid, h_grid)

# Integrate over posteriors 
matrices_gp <- gp_transition_matrix(gp_dat$Ef_posterior, gp_dat$Vf_posterior, x_grid, h_grid) 

# Solve the SDP using the GP-derived transition matrix
opt_gp <- value_iteration(matrices_gp, x_grid, h_grid, MaxT, xT, profit, delta, reward)

Determine the optimal policy based on the allen and MLE models

matrices_true <- f_transition_matrix(f, p, x_grid, h_grid, sigma_g)
opt_true <- value_iteration(matrices_true, x_grid, h_grid, OptTime=MaxT, xT, profit, delta=delta)

matrices_estimated <- f_transition_matrix(est$f, est$p, x_grid, h_grid, est$sigma_g)
opt_estimated <- value_iteration(matrices_estimated, x_grid, h_grid, OptTime=MaxT, xT, profit, delta=delta)

Determine the optimal policy based on Bayesian Allen model

matrices_allen <- parameter_uncertainty_SDP(allen_f, x_grid, h_grid, pardist, 4)
opt_allen <- value_iteration(matrices_allen, x_grid, h_grid, OptTime=MaxT, xT, profit, delta=delta)

Bayesian Ricker

matrices_ricker <- parameter_uncertainty_SDP(ricker_f, x_grid, h_grid, as.matrix(ricker_pardist), 3)
opt_ricker <- value_iteration(matrices_ricker, x_grid, h_grid, OptTime=MaxT, xT, profit, delta=delta)

Bayesian Myers model

matrices_myers <- parameter_uncertainty_SDP(myers_f, x_grid, h_grid, as.matrix(myers_pardist), 4)
myers_alt <- value_iteration(matrices_myers, x_grid, h_grid, OptTime=MaxT, xT, profit, delta=delta)

Assemble the data

OPT = data.frame(GP = opt_gp$D, True = opt_true$D, MLE = opt_estimated$D, Ricker = opt_ricker$D, Allen = opt_allen$D, Myers = myers_alt$D)
colorkey=cbPalette
names(colorkey) = names(OPT) 

Graph of the optimal policies

policies <- melt(data.frame(stock=x_grid, sapply(OPT, function(x) x_grid[x])), id="stock")
names(policies) <- c("stock", "method", "value")

ggplot(policies, aes(stock, stock - value, color=method)) +
  geom_line(lwd=1.2, alpha=0.8) + xlab("stock size") + ylab("escapement")  +
  scale_colour_manual(values=colorkey)

plot of chunk Figure2

Simulate 100 realizations managed under each of the policies

sims <- lapply(OPT, function(D){
  set.seed(1)
  lapply(1:100, function(i) 
    ForwardSimulate(f, p, x_grid, h_grid, x0, D, z_g, profit=profit, OptTime=OptTime)
  )
})

dat <- melt(sims, id=names(sims[[1]][[1]]))
dt <- data.table(dat)
setnames(dt, c("L1", "L2"), c("method", "reps")) 
# Legend in original ordering please, not alphabetical: 
dt$method = factor(dt$method, ordered=TRUE, levels=names(OPT))
ggplot(dt) + 
  geom_line(aes(time, fishstock, group=interaction(reps,method), color=method), alpha=.1) +
  scale_colour_manual(values=colorkey, guide = guide_legend(override.aes = list(alpha = 1)))

plot of chunk Figure3

Profit <- dt[, sum(profit), by=c("reps", "method")]
Profit[, mean(V1), by="method"]
   method    V1
1:     GP 30.06
2:   True 31.14
3:    MLE  5.00
4: Ricker 29.82
5:  Allen 30.53
6:  Myers 27.93
ggplot(Profit, aes(V1)) + geom_histogram() + 
  facet_wrap(~method, scales = "free_y") + guides(legend.position = "none") + xlab("Total profit by replicate")

plot of chunk totalprofits

allen_deviance <- posterior.mode(pardist[,'deviance'])
ricker_deviance <- posterior.mode(ricker_pardist[,'deviance'])
myers_deviance <- posterior.mode(myers_pardist[,'deviance'])
true_deviance <- 2*estf(c(p, sigma_g))
mle_deviance <- 2*estf(c(est$p, est$sigma_g))

c(allen = allen_deviance, ricker=ricker_deviance, myers=myers_deviance, true=true_deviance, mle=mle_deviance)
     allen     ricker      myers       true        mle 
    -7.529     -2.893    -10.158   -106.638 -16204.252 


cboettig/nonparametric-bayes documentation built on May 13, 2019, 2:09 p.m.