opts_chunk$set(external = TRUE, cache = FALSE, cache.path = "myers-cache/", warning=FALSE)
#read_chunk('gaussian-process-control.R')
library(knitcitations)
require(pdgControl)
require(nonparametricbayes)
require(reshape2)
require(ggplot2)
require(data.table)
require(tgp)
library(kernlab)
require(MCMCpack)
require(plyr)
opts_knit$set(upload.fun = socialR::notebook.url)
#opts_chunk$set(dev = 'Cairo_pdf', dev.args=list(""))
opts_chunk$set(dev="png", dev.args=list(bg="transparent"))
opts_chunk$set(comment=NA, tidy=FALSE)
theme_set(theme_bw(base_size=16))
theme_update(panel.background = element_rect(fill = "transparent",colour = NA),
             plot.background = element_rect(fill = "transparent",colour = NA))
cbPalette <- c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")

Fixed priors on hyperparameters, fixed model type.

s2.p <- c(50,50)  # inverse gamma mean is 
tau2.p <- c(20,1)
d.p = c(10, 1/0.01, 10, 1/0.01)
nug.p = c(10, 1/0.01, 10, 1/0.01) # gamma mean
s2_prior <- function(x) dinvgamma(x, s2.p[1], s2.p[2])
tau2_prior <- function(x) dinvgamma(x, tau2.p[1], tau2.p[2])
d_prior <- function(x) dgamma(x, d.p[1], scale = d.p[2]) + dgamma(x, d.p[3], scale = d.p[4])
nug_prior <- function(x) dgamma(x, nug.p[1], scale = nug.p[2]) + dgamma(x, nug.p[3], scale = nug.p[4])
beta0_prior <- function(x, tau) dnorm(x, 0, tau)
beta = c(0)
priors <- list(s2 = s2_prior, tau2 = tau2_prior, beta0 = dnorm, nug = nug_prior, d = d_prior, ldetK = function(x) 0)
profit = function(x,h) pmin(x, h)
delta <- 0.01
OptTime = 20  # stationarity with unstable models is tricky thing
reward = 0
xT <- 0
z_g = function() rlnorm(1, 0, sigma_g)
z_m = function() 1+(2*runif(1, 0,  1)-1) * sigma_m
f <- RickerAllee
p <- c(1.1, 10, 5) 
K <- 10
allee <- 5
sigma_g <- 0.05
sigma_m <- 0.02
x_grid <- seq(0, 1.5 * K, length=101)
h_grid <- x_grid

With parameters r p.


require(snowfall)
sfInit(par=TRUE, cpu=8)
sfExportAll()
sfLibrary(pdgControl)
sfLibrary(nonparametricbayes)
sfLibrary(reshape2)
sfLibrary(ggplot2)
sfLibrary(data.table)
sfLibrary(tgp)
sfLibrary(kernlab)
sfLibrary(MCMCpack)
sfLibrary(plyr)
seed <- round(runif(32) * 1e6)
seed[1] <- 1
seed
yields <- lapply(seed, 
function(seed_i){
  Xo <- allee + x_grid[10] # observations start from
  x0 <- Xo # simulation under policy starts from
  obs <- sim_obs(Xo, z_g, f, p, Tobs=40, seed = seed_i)
  est <- par_est(obs)
  gp <- bgp(X=obs$x, XX=x_grid, Z=obs$y, verb=0,
          meanfn="constant", bprior="b0", BTE=c(2000,16000,2),
          m0r1=FALSE, corr="exp", trace=FALSE, 
          beta = beta, s2.p = s2.p, d.p = d.p, nug.p = nug.p, tau2.p = tau2.p,
          s2.lam = "fixed", d.lam = "fixed", nug.lam = "fixed", tau2.lam = "fixed")      
  gp_plot(gp, f, p, est$f_alt, est$p_alt, x_grid, obs, seed_i)
#  posteriors_plot(gp, priors) # needs trace=TRUE!
  OPT <- optimal_policy(gp, f, est$f_alt, p, est$p_alt, x_grid, h_grid, sigma_g, est$sigma_g_alt, delta, xT, profit, reward, OptTime)
  dt <- simulate_opt(OPT, f, p, x_grid, h_grid, x0, z_g, profit)
  sim_plots(dt, seed=seed_i)
  profits_stats(dt)
})
yields <- melt(yields, id=c("method", "V1", "sd"))
ggplot(yields) + geom_histogram(aes(V1)) + facet_wrap(~method, scale='free')
yields
````



```r
bibliography("html")


cboettig/nonparametric-bayes documentation built on May 13, 2019, 2:09 p.m.