# library(ggplot2)
# library(magrittr)
# data <- rcr %>%
# filter(Cr > set_units(10, umol / mol), Cr < set_units(480, umol / mol))
# with(data, plot(Cr, A))
# empty <- mty
#
# empty %<>%
# bayCi:::prepare_empty() %>%
# dplyr::mutate_if(~ inherits(.x, "units"), units::drop_units)
#
# # Compose data for Stan ----
# data %<>% dplyr::mutate_if(~ inherits(.x, "units"), units::drop_units)
# stan_data <- list(
# n_empty = nrow(empty),
# A_empty = empty$A,
# Cr_empty = empty$Cr,
#
# n_data = nrow(data),
# A_data = data$A,
# Cr_data = data$Cr,
# Cs_data = data$Cs,
# E_data = data$E,
# gsc_data = data$gsc,
# gtc_data = data$gtc,
# Pa_data = data$Pa,
# Pcr_data = data$Pcr
# )
#
# library(rstan)
# braycirmod <- rstan::stan_model(file = "data-raw/braycir.stan", model_name = "braycir")
# fit <- rstan::sampling(
# object = braycirmod,
# data = stan_data,
# iter = 2e4,
# chains = 1,
# init = list(list(
# gamma_star = 35.91,
# Km = 661.453,
# Vcmax = 117.5,
# J = 224.4,
# Rd = 1
# )),
# verbose = TRUE)
#
# summary(fit, pars = c("Rd"))
# fit <- stan(
# file = "data-raw/braycir.stan",
# model_name = "braycir",
# data = stan_data,
# chains = 1,
# init = list(list(
# gamma_star = 35.91,
# Km = 661.453,
# Vcmax = 117.5,
# J = 224.4,
# Rd = -0.5
# )),
# verbose = TRUE
# )
#
# summary(fit, pars = c("gamma_star", "J", "Km", "Rd", "Vcmax", "sigma_data"))
# library(tidyverse)
# s <- summary(fit, pars = c("A_corrected", "Ci_corrected"))
# tmp <- s$summary[, "mean"] %>%
# as.data.frame() %>%
# rownames_to_column() %>%
# mutate(
# trait = str_replace(rowname, "^(A|Ci)_corrected\\[[0-9]+\\]$", "\\1"),
# i = str_replace(rowname, "^(A|Ci)_corrected\\[([0-9]+)\\]$", "\\2"),
# ) %>%
# select(-rowname) %>%
# rename(value = .data$`.`) %>%
# spread(trait, value) %>%
# filter(Ci > 30, Ci < 319)
#
# gp <- ggplot(tmp, aes(Ci, A)) +
# geom_point() +
# theme_bw()
#
# gp
#
# library(plantecophys)
# tmp %<>%
# mutate(PPFD = 1000, Tleaf = 25)
#
# fit <- fitaci(tmp, varnames = list(ALEAF = "A", Ci = "Ci", PPFD = "PPFD", Tleaf = "Tleaf"), Tcorrect = FALSE, Patm = 84, PPFD = 1000, Tleaf = 25)
# fit
#
# library(photosynthesis)
# data$Pgsc <- drop_units(convert_conductance(set_units(data$gsc, mol/m^2/s), P = set_units(data$Pa, kPa), Temp = set_units(25, degreeC))$`umol/m^2/s/Pa`)
#
# lp <- make_leafpar(use_tealeaves = FALSE, replace = list(
# g_mc25 = set_units(100, umol/m^2/s/Pa),
# g_sc = set_units(mean(data$Pgsc), umol/m^2/s/Pa),
# J_max25 = set_units(243.4, umol / m^2 / s),
# R_d25 = set_units(0.74, umol / m^2 / s),
# V_cmax25 = set_units(116.9, umol / m^2 / s),
# V_tpu25 = set_units(1000, umol / m^2 / s)
# ))
# ep <- make_enviropar(use_tealeaves = FALSE, replace = list(
# C_air = set_units(seq(min(data$Pcr), max(data$Pcr), length.out = 1e1), Pa),
# P = set_units(mean(data$Pa), kPa)
# ))
#
# bp <- make_bakepar()
# cs <- make_constants(use_tealeaves = FALSE)
# ph <- photosynthesis(lp, ep, bp, cs, use_tealeaves = FALSE, set_units = FALSE, parallel = TRUE)
# plot(ph$C_air, ph$A)
#
#
# gp +
# geom_line(
# data = mutate(ph, Pcr = drop_units(C_air), A = drop_units(A), key = "sim")
# )
#
# plantecophys::fitaci
# plantecophys:::acifun_wrap
# plantecophys:::Photosyn
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.